DISCRETE WAVELET TRANSFORMATIONS
An Elementary Approach with Applications

PATRICK J. VAN FLEET
University of St. Thomas
CONTENTS

Preface xiii
Acknowledgments xxiii

1 Introduction: Why Wavelets? 1

2 Vectors and Matrices 15

2.1 Vectors, Inner Products, and Norms 16
Problems 20
Computer Lab 22

2.2 Basic Matrix Theory 22
Problems 36
Computer Lab 38

2.3 Block Matrix Arithmetic 38
Problems 45
Computer Lab 48

vii
Contents

3 An Introduction to Digital Images

3.1 The Basics of Grayscale Digital Images
Problems
Computer Labs
3.2 Color Images and Color Spaces
Problems
Computer Labs
3.3 Qualitative and Quantitative Measures
Problems
Computer Labs
3.4 Huffman Encoding
Problems
Computer Labs

4 Complex Numbers and Fourier Series

4.1 The Complex Plane and Arithmetic
Problems
Computer Lab
4.2 Complex Exponential Functions
Problems
4.3 Fourier Series
Problems
Computer Lab

5 Convolution and Filters

5.1 Convolution
Problems
Computer Lab
5.2 Filters
Problems
Computer Lab
5.3 Convolution as a Matrix Product
Problems

6 The Haar Wavelet Transformation

6.1 Constructing the Haar Wavelet Transformation
6.2 Iterating the Process
Problems 173
Computer Labs 183

6.3 The Two-Dimensional Haar Wavelet Transformation
Problems 183
Computer Labs 199

6.4 Applications: Image Compression and Edge Detection
Problems 199
Computer Labs 221

7 Daubechies Wavelet Transformations 223
7.1 Daubechies Filters of Length 4 and 6
Problems 224
Computer Labs 252

7.2 Daubechies Filters of Even Length
Problems 253
Computer Labs 265

7.3 Algorithms for Daubechies Wavelet Transformations
Problems 265
Computer Labs 279

8 Orthogonality and Fourier Series 281
8.1 Fourier Series and Lowpass Filters
Problems 282

8.2 Building $G(\omega)$ from $H(\omega)$
Problems 288

8.3 Coiflet Filters
Problems 298
Computer Labs 316

9 Wavelet Shrinkage: An Application to Denoising 317
9.1 An Overview of Wavelet Shrinkage
Problems 318
Computer Labs 324
9.2 VisuShrink 325
 Problems 333
 Computer Labs 334

9.3 SureShrink 335
 Problems 346
 Computer Labs 350

10 Biorthogonal Filters 351
 10.1 Constructing Biorthogonal Filters 353
 Problems 368
 10.2 Biorthogonal Spline Filters 371
 Problems 391
 Computer Lab 393
 10.3 The Cohen–Daubechies–Feauveau 9/7 Filter 394
 Problems 403
 Computer Lab 406

11 Computing Biorthogonal Wavelet Transformations 407
 11.1 Computing the Biorthogonal Wavelet Transformation 408
 Problems 416
 Computer Labs 416
 11.2 Computing the Inverse Biorthogonal Wavelet Transformation 417
 Problems 434
 Computer Labs 434
 11.3 Symmetry and Boundary Effects 435
 Problems 453
 Computer Labs 457

12 The JPEG2000 Image Compression Standard 459
 12.1 An Overview of JPEG 460
 Problems 467
 Computer Lab 467
 12.2 The Basic JPEG2000 Algorithm 468
 Problems 475
 12.3 Lifting and Lossless Compression 476
 Problems 484
Appendix A: Basic Statistics

A.1 Descriptive Statistics
Problems
493
495
A.2 Sample Spaces, Probability, and Random Variables
Problems
496
499
A.3 Continuous Distributions
Problems
499
505
A.4 Expectation
Problems
506
511
A.5 Two Special Distributions
Problems
512
515
References
519
Index
525