Contents

Series Preface IX
Volume Preface XI
List of Contributors XIII

1 Valve Metal, Si and Ceramic Oxides as Dielectric Films for Passive and Active Electronic Devices 1
Alexander Michaelis

1.1 Introduction 1
1.1.1 Experimental Approaches 2
1.2 Fundamentals and Experimental Details 5
1.2.1 Electrochemical Oxide Layer Formation on Valve Metals 5
1.2.2 The C(U) Curve of a Valve Metal Electrode 7
1.2.3 Application of Lasers in Electrochemistry 8
1.2.3.1 Thermal Effects 9
1.2.4 Electrochemical Photocurrent Measurements (Optical/Electrical Method Class), Introduction of a New Model 10
1.2.4.1 Photocurrent Model for Ultra-thin, Amorphous Films With TiO₂ as an Example 11
1.3 Valve Metal Systems 15
1.3.1 Ti/TiO₂ System 15
1.3.1.1 Experimental Details 15
1.3.1.2 Determination of Ti Substrate Grain Orientation by SAME 17
1.3.1.3 Photocurrent Spectra and iₚₒₜ(U) Measurements on Single Ti/TiO₂ Grains 18
1.3.1.4 Microscopic Modification of the TiO₂ Films by Means of Laser Scanning 19
1.3.1.5 Characterization of the Modified TiO₂ Films 21
1.3.1.6 Photoresist Microelectrochemistry (Nanoliter Droplet Method) 25
1.3.1.7 Applications of Photoresist Microelectrodes 28
1.3.1.8 Summary and Conclusions for the Ti/TiO₂ System 36
Contents

1.3.2 Zr/ZrO₂ and Hf/HfO₂ Systems 37
1.3.2.1 Zr/ZrO₂ 37
1.3.2.2 Hf/HfO₂ 46
1.3.3 Systems: Nb/Nb₂O₅, Ta/Ta₂O₅ and Al/Al₂O₃ 48
1.3.3.1 Nb/Nb₂O₅ System 49
1.3.3.2 Al/Al₂O₃ System 53
1.3.3.3 Ta/Ta₂O₅ System 54
1.3.4 Application of Valve Metals in Electrolytic Capacitor Manufacturing 57
1.3.4.1 Capacitor Fundamentals 57
1.3.4.2 Capacitor Device Types and Production of Ta Capacitors 62
1.3.4.3 Current Development Trends for Ta Capacitors and Research Issues Involved 65
1.3.4.4 Effect of Oxygen Content and Sinter Conditions on Dislocation Formation 67
1.3.4.5 Thermal Runaway 70
1.4 Si/SiO₂ System 74
1.4.1 Application of the Si/SiO₂ System 77
1.4.1.1 Si/SiO₂ in MOSFETs 77
1.4.1.2 Si/SiO₂ in DRAMs 80
1.4.1.3 DRAM Storage Capacitor (Deep Trench) 82
1.4.2 Alternative Dielectric Materials 90
1.4.2.1 Ta₂O₅ 92
1.4.2.2 Ti/TiO₂ 95
1.5 Summary and Conclusions 96
References 99

2 Superconformal Film Growth 107
Thomas P. Moffat, Daniel Wheeler, and Daniel Josell
2.1 Introduction 107
2.2 Destabilizing Influences 108
2.3 Stabilization and Smoothing Mechanisms 110
2.3.1 Geometric Leveling 110
2.3.2 Inhibitor-based Leveling 110
2.3.3 Brightening by Grain Refinement 111
2.3.4 Catalyst-derived Brightening 112
2.3.5 Stabilization Across Length Scales 112
2.4 Additive Processes 113
2.4.1 Adsorption Kinetics 117
2.4.2 Surface Segregation versus Consumption Processes 117
2.4.2.1 Adsorbates Segregated onto Growing Surface 118
2.4.2.2 Adsorbates Incorporated into Growing Deposit 119
2.4.2.3 Deactivation of Adsorbate 121
2.4.3 Adsorbate Evolution 121
2.4.4 Impact on Microstructure 122
2.4.5 Quantifying Adsorbate Inhibition of Metal Deposition 125
2.4.6 Co-adsorption Effects 130
2.4.7 Catalysis of Metal Deposition 134
2.4.8 Activation of Blocked Electrodes by Competitive Adsorption of a Catalyst 135
2.4.9 Catalyst Function and Consumption 138
2.4.10 Quantifying the Effects of Competitive Adsorption on Metal Deposition 141
2.4.10.1 Site Dependence of Charge Transfer Kinetics 142
2.4.10.2 Catalyst Evolution 143
2.4.10.3 SPS Adsorption from the Electrolyte 143
2.5 Interface Motion and Morphological Evolution 146
2.5.1 Shape Change Simulations 146
2.5.2 Geometric Leveling 150
2.5.3 Inhibitor-based Leveling 153
2.5.3.1 Feature Filling 153
2.5.3.2 Stability Analysis 160
2.5.4 Catalyst-derived Brightening 161
2.5.4.1 Feature Filling 161
2.5.4.2 Stability Analysis 173
2.5.5 Bridging the Length Scales 176
2.6 Conclusions and Outlook 179
References 179

3 Transition Metal Macrocycles as Electrocatalysts for Dioxygen Reduction 191
Daniel A. Scherson, Attila Palencsár, Yuriy Tolmachev, and Ionel Stefan
3.1 Introduction 191
3.1.1 Electrocatalysis 192
3.1.2 Dioxygen Reduction in Aqueous Electrolytes: General Aspects 193
3.1.3 Transition Metal Macrocycles 199
3.1.3.1 General Characteristics 199
3.1.3.2 Electrocatalytic Properties Toward Oxygen Reduction 201
3.2 Homogeneous Electrocatalysis 204
3.2.1 Intrinsic Properties of Solution Phase Transition Metal Macrocycles 204
3.2.1.1 Formal Redox Potentials and Diffusion Coefficients 204
3.2.1.2 Molecular Speciation 209
3.2.1.3 Rates of Heterogeneous Electron Transfer Reactions 211
3.2.2 Macrocyclic-Mediated Reduction of Dioxygen in Aqueous Electrolytes 212
3.2.2.1 Model Systems 212
3.3 Heterogeneous Electrocatalysis 219
3.3.1 Adsorption Isotherms 220
3.3.2 Chemically Modified Electrodes 221
3.3.2.1 Preparation and Electrochemical Characterization 221
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.2.2</td>
<td>In situ Spectroscopic Characterization</td>
<td>226</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Redox Active Chemically Modified Electrodes</td>
<td>232</td>
</tr>
<tr>
<td>3.3.3.1</td>
<td>Thermodynamic Aspects</td>
<td>232</td>
</tr>
<tr>
<td>3.3.3.2</td>
<td>Redox Speciation</td>
<td>235</td>
</tr>
<tr>
<td>3.3.3.3</td>
<td>Redox Dynamics</td>
<td>238</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Electrocatalytic Aspects of Dioxygen Reduction</td>
<td>241</td>
</tr>
<tr>
<td>3.3.4.1</td>
<td>Theoretical Considerations</td>
<td>241</td>
</tr>
<tr>
<td>3.3.4.2</td>
<td>Model Systems</td>
<td>244</td>
</tr>
<tr>
<td>3.4</td>
<td>Thermal Activation of Transition Metal Macrocycles</td>
<td>269</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Brief Introduction</td>
<td>269</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Electrochemical Characterization</td>
<td>269</td>
</tr>
<tr>
<td>3.4.2.1</td>
<td>Cyclic Voltammetry</td>
<td>270</td>
</tr>
<tr>
<td>3.4.2.2</td>
<td>Oxygen Reduction Polarization Curves</td>
<td>271</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Spectroscopic and Structural Characterization</td>
<td>273</td>
</tr>
<tr>
<td>3.4.3.1</td>
<td>Pyrolysis-Mass Spectrometry</td>
<td>273</td>
</tr>
<tr>
<td>3.4.3.2</td>
<td>Mossbauer Effect Spectroscopy</td>
<td>277</td>
</tr>
<tr>
<td>3.4.3.3</td>
<td>X-ray Absorption Fine Structure</td>
<td>278</td>
</tr>
<tr>
<td>3.4.3.4</td>
<td>X-ray Photoelectron Spectroscopy</td>
<td>281</td>
</tr>
<tr>
<td>3.4.4</td>
<td>In Situ and Quasi In Situ Spectroscopic Characterization</td>
<td>281</td>
</tr>
<tr>
<td>3.4.5</td>
<td>Concluding Remarks</td>
<td>283</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>285</td>
</tr>
</tbody>
</table>

4 Multiscale Modeling and Design of Electrochemical Systems 289

Richard D. Braatz, Edmund G. Seebauer, and Richard C. Alkire

4.1 Introduction 289
4.2 Background and Motivation 291
4.2.1 Multiscale Simulation 291
4.2.2 Electrochemical Systems 293
4.2.3 Microelectronic Applications 295
4.2.4 Nanoscale Science and Technology 296
4.2.5 Other Electrochemical Applications 297
4.3 Trend Toward Atomistic/Molecular Simulation 298
4.3.1 Integrated Circuit Example 298
4.3.2 Continuum Methods 300
4.3.3 Molecular Simulation Methods 300
4.3.4 Coarse-grained Simulation Methods 303
4.4 Multiscale Simulation 304
4.5 Challenges and Requirements of Multiscale Modeling 310
4.6 Addressing the Challenges in Multiscale Modeling 311
4.7 Design Based on Multiscale Models 315
4.8 Concluding Remarks 322
References 324

Index 335