Rules of Thumb for Maintenance and Reliability Engineers

Ricky Smith

R. Keith Mobley
Contents

<table>
<thead>
<tr>
<th>Introduction—The Recommended First Step to Rules of Thumb in Reliability Engineering</th>
<th>xiii</th>
</tr>
</thead>
<tbody>
<tr>
<td>PART I</td>
<td>CHAPTER</td>
</tr>
<tr>
<td>THE BASICS OF MAINTENANCE AND RELIABILITY</td>
<td>1</td>
</tr>
<tr>
<td>1.1. The Maintenance Function</td>
<td>3</td>
</tr>
<tr>
<td>1.2. Strategy to Achieve World-Class Production through Reliability</td>
<td>4</td>
</tr>
<tr>
<td>1.2.1. Maintenance Approaches</td>
<td>4</td>
</tr>
<tr>
<td>1.2.2. Maintenance Management Philosophy</td>
<td>5</td>
</tr>
<tr>
<td>1.2.3. The Function and Control System</td>
<td>5</td>
</tr>
<tr>
<td>1.2.4. What Is Maintenance?</td>
<td>5</td>
</tr>
<tr>
<td>1.2.5. Specification</td>
<td>6</td>
</tr>
<tr>
<td>1.2.6. The Maintenance Function</td>
<td>6</td>
</tr>
<tr>
<td>1.3. What Is Reliability?</td>
<td>8</td>
</tr>
<tr>
<td>1.3.1. Companies That Get It</td>
<td>8</td>
</tr>
<tr>
<td>1.3.2. Why Move Toward Proactive Work?</td>
<td>9</td>
</tr>
<tr>
<td>1.3.3. A New Way to View Failure</td>
<td>10</td>
</tr>
<tr>
<td>1.4. Maintenance/Reliability Assessment</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER

3

Preventive Maintenance Program

3.1. Reliability-Based Preventive Maintenance 37
 3.1.1. Information Collection 38
 3.1.2. System Analysis 38
 3.1.3. Identification of Systems 38
 3.1.4. Identification of System Functions 38
 3.1.5. Selection of Systems 38
 3.1.6. System Functional Failure and Criticality Rating 40
3.2. Identification of Functionally Significant Items 40
3.3. Maintenance Task Selection (Decision Logic Tree Analysis) 40
 3.3.1. Levels of Analysis 41
 3.3.2. Paralleling and Default Logic 43
3.4. Maintenance Tasks 43
3.5. Task Frequencies/Intervals 44

CHAPTER

4

Predictive Maintenance Program

4.1. Setting Up a Preventive/Predictive Maintenance Program 49
4.2. Visual Inspection 50
4.3. Vibration Analysis 50
4.4. Thermography 53
4.5. Tribology 54
4.6. Ultrasonics 56

CHAPTER

5

Reliability Processes

5.1. Reliability Software—Managing the Health of Assets 57
 5.1.1. Building an Effective Asset Reliability Program 58
 5.1.2. Using Reliability Software to Put the Program into Action 58
5.1.3. Using Handheld Devices to Collect and Upload Condition Inspection Data 59
5.1.4. Plotting Asset Health Trends 61
5.1.5. Capturing the Experts' Knowledge about Asset Condition 61
5.1.6. Integration to Enterprise Asset Management and Computerized Maintenance Management Systems 62
5.1.7. The Bottom Line 63
5.2. Seven Questions Addressed by Reliability Centered Maintenance 63
5.3. Failure Mode and Effects Analysis 66
5.4. Equipment Criticality Analysis 68
 5.4.1. Preparing for an Equipment Criticality Analysis 71
 5.4.2. Conducting the Review 72
 5.4.3. Analyzing the Assessment Results 75
 5.4.4. Using the Output of the Equipment Criticality Assessment 77
 5.4.5. Conclusions 78
5.5. Root Cause Analysis 79
 5.5.1. Plan 79
 5.5.2. Do 81
 5.5.3. Check 83
 5.5.4. Act 86

CHAPTER

6

Key Performance Indicators

6.1. Defining and Understanding KPIs 89
 6.1.1. The Problem 90
 6.1.2. John Day 91
 6.1.3. The Solution 93
6.2. KPI Dashboards 93
 6.2.1. Plant Manager Dashboard 93
 6.2.2. Plant Management Team Dashboard 93
 6.2.3. Production Manager (Supervisor) Dashboard 94
 6.2.4. Production Operator Dashboard 94
 6.2.5. Maintenance Manager (Supervisor) Dashboard 94
 6.2.6. Maintenance Staff Dashboard 95
 6.2.7. Reliability Engineer Dashboard 95
 6.2.8. Engineering Manager Dashboard 95
 6.2.9. Purchasing Manager Dashboard 95
 6.2.10. Maintenance Stores Manager 95
 6.2.11. Conclusion 95
II EQUIPMENT AND PROCESSES

8 Chain Drives

8.1. Chain Selection 124
 8.1.1. Plain or Detachable-Link Chain 124
 8.1.2. Roller Chain 124
 8.1.3. Sprockets 124
8.2. Chain Installation 124
8.3. Power Train Formulas 125
 8.3.1. Shaft Speed 125
8.4. Chain Length 126
8.5. Multiple Sprockets 126
8.6. Chain Speed 127
8.7. Preventive Maintenance Procedures 127

9 Hydraulics

9.1. Hydraulic Knowledge 129
9.2. Hydraulic Troubleshooter 129
9.3. General Maintenance Person 129
9.4. Best Maintenance Hydraulic Repair Practices 130
9.5. Root Cause Failure Analysis 130
9.6. Preventive Maintenance 130
9.7. Measuring Success 132
9.8. Recommended Maintenance Modifications 133

10 Maintenance Welding

10.2. Flux-Cored Arc Welding (FCAW) 137
 10.2.1. FCAW with Gas 137
 10.2.2. FCAW Self-Shielded 137
10.3. Gas-Shielded Metal Arc Welding (GMAW) 141
10.3.1. GMAW for Maintenance Welding 141
10.3.2. Gas Selection for GMAW 141
10.4. Gas Tungsten Arc Welding (GTAW) 144
10.4.1. Applicability of GTAW 145
10.4.2. Advantages and Disadvantages of GTAW 145
10.4.3. Principles of Operating GTAW 145
10.4.4. Polarity and GTAW 147
10.4.5. GTAW Shielding Gases and Flow Rates 147
10.4.6. Electrode Material for GTAW 148
10.4.7. GTAW Electrode Size and Tip Shape 148
10.4.8. GTAW Electrode Holders and Gas Nozzles 149
10.4.9. Characteristics of GTAW Power Supplies 149
10.4.10. GTAW Torches 150
10.4.11. Manual GTAW Techniques 151
10.4.12. Establishing Welding Parameters for GTAW 151
10.4.13. Gas Tungsten Arc Starting Methods 151
10.5. Oxyacetylene Cutting 151
10.6. Air-Carbon Are Cutting and Gouging 152
10.6.1. Applications 153
10.6.2. Power Sources 154
10.7. Plasma Arc Cutting 155
10.8. Welding Procedures 157
10.9. Qualification of Welders 157
10.10. Plasma Arc Welding 157
10.11. Base Metals 157
10.11.1. The Carbon Steels 157
10.11.2. The Alloy Steels 158
10.11.3. The Nonferrous Metals 160
10.12. Control of Distortion 160
10.13. Special Applications 161
10.13.1. Sheet Metal Welding 161
10.13.2. Hard Surfacing 161
10.13.3. Resisting Abrasive Wear 161
10.13.4. Resisting Impact Wear 161
10.13.5. Types of Surfacing Electrodes 163
10.13.7. Check Welding Procedure 165
10.13.8. Check Before the Part Is Completely Worn 165
10.13.9. Hard Surfacing with SAW 165
10.14.1. Machines 167
10.14.2. Accessory Equipment 169
10.15. Installation of Equipment 169
10.16. Equipment Operation and Maintenance 170
10.16.1. Keep the Machine Clean and Cool 170
10.16.2. Do Not Abuse the Machine 170
10.16.3. Do Not Work the Machine Over Its Rated Capacity 170
10.16.4. Do Not Handle Roughly 170
10.16.5. Maintain the Machine Regularly 170
10.17. Safety 172

CHAPTER

11

Bearings

11.1. Types of Movement 175
11.1.1. About a Point (Rotational) 175
11.1.2. About a Line (Rotational) 175
11.1.3. Along a Line (Translational) 175
11.1.4. In a Plane (Rotational/Translational) 178
11.2. Commonly Used Bearing Types 178
11.2.1. Plain Bearings 178
11.2.2. Rolling Element or Antifriction Bearings 182
11.2.3. Roller Bearings 185
11.3. Bearing Materials 187
11.3.1. Plain 188
11.3.2. Rolling Element 188
11.4. Lubrication 188
11.4.1. Plain Bearings 188
11.4.2. Rolling Element Bearings 189
11.5. Installation and General Handling Precautions 190
11.5.1. Plain Bearing Installation 190
11.5.2. Roller Bearing Installation 190
11.5.3. General Roller-Element Bearing Handling Precautions 192
11.6. Bearing Failures, Deficiencies, and Their Causes 193
11.6.1. Improper Bearing Selection and/or Installation 193

CHAPTER

12

Compressors

12.1. Centrifugal 199
12.1.1. Configuration 199
12.2. Performance 201
12.2.1. First Law of Thermodynamics 201
12.2.2. Second Law of Thermodynamics 202
12.2.3. Pressure/Volume/Temperature (PVT) Relationship 202
12.2.4. Pressure/Compression 202
12.2.5. Other Performance Indicators 202
12.3. Positive Displacement 203
 12.3.1. Rotary 203
12.4. Reciprocating 206
 12.4.1. Configuration 207
 12.4.2. Performance 210
 12.4.3. Installation 210
 12.4.4. Operating Methods 212
12.5. Troubleshooting 212
 12.5.1. Centrifugal 212
 12.5.2. Rotary-Type, Positive Displacement 212
 12.5.3. Reciprocating, Positive Displacement 216

CHAPTER 13

Gears and Gearboxes

13.1. Spur Gears 225
13.2. Pitch Diameter and Center Distance 226
13.3. Circular Pitch 227
13.4. Diametrical Pitch and Measurement 227
 13.4.1. Method 1 228
 13.4.2. Method 2 228
13.5. Pitch Calculations 228
13.6. Tooth Proportions 229
13.7. Backlash 230
13.8. Other Gear Types 230
 13.8.1. Bevel and Miter 230
 13.8.2. Helical 231
 13.8.3. Worm 232
 13.8.4. Herringbone 233
 13.8.5. Gear Dynamics and Failure Modes 233
 13.8.6. Common Characteristics 235
13.9. Troubleshooting 236
 13.9.1. Normal Wear 237
 13.9.2. Abnormal Wear 237

CHAPTER 14

Packing and Seals

14.1. Fundamentals 239
 14.1.1. Shaft Seal Requirements 239
 14.1.2. Sealing Devices 239
14.2. Mechanical Seal Designs 242
 14.2.1. Single-Coil Spring Seal 242
 14.2.2. Positive Drive 242
14.3. Installation Procedures 242
 14.3.1. Packed Stuffing Box 243
 14.3.2. Mechanical Seals 245
14.4. Troubleshooting 248
 14.4.1. Mechanical Seals 248
 14.4.2. Packed Boxes 249

CHAPTER 15

Electric Motors

15.1. Bearing Frequencies 251
15.2. Imbalance 251
15.3. Line Frequency 251
15.4. Loose Rotor Bars 251
15.5. Running Speed 252
15.6. Slip Frequency 252
15.7. V-Belt Intermediate Drives 252
15.8. Electric Motor Analysis 252

PART III

ADDITIONAL READINGS ON MAINTENANCE AND RELIABILITY

CHAPTER 16

Reliability Articles

16.1. Top Five Reasons Why Companies Don’t Measure Reliability: It Seems Like Everyone Has an Excuse as to Why They Don’t Measure Reliability 255
 16.1.1. Reason 1 255
 16.1.2. Reason 2 255
 16.1.3. Reason 3 255
 16.1.4. Reason 4 255
 16.1.5. Reason 5 256
16.2. Creating a Culture Change in Your Maintenance Department: Is Your Maintenance Crew in a Reactive Mindset? Check Out a List of Qualifiers to Find Out and Then Learn How to Change It 256
16.3. Exterminate Lube Problems: Grease and Oil Expertise Can Be a Serious Competitive Edge 257
 16.3.1. Big, Bad, and Ugly 257
 16.3.2. Make Lube Expertise a Specialty 258
 16.3.3. Get the Job Done 260
16.4. What It Takes to Make the Climb from Reactive to RCM 260
 16.4.1. Waving the Flag 261
 16.4.2. Does Management Understand? 269
 16.4.3. Who Owns Reliability? 270
 16.4.4. Informal versus Formal PM Programs 270
 16.4.5. To Measure Is to Manage 270
 16.4.6. Depth of Understanding 271
 16.4.7. Indicated Actions 272
 16.4.8. Lessons Are Simple 273
16.5. Put a Plant-wide Focus on Functional Failures 274
16.6. Reliability Is Worth a Second Look: Statistical Analysis and Time-Based Preventive Maintenance Don’t Really Address the Ability to Perform—It’s Time to Get Familiar with the Definition of Reliability 275
16.7. When Preventive Maintenance Doesn’t Work 276
16.8. The Top Four Reasons Why Predictive Maintenance Fails and “What to Do about It” 277
 16.8.1. PF Curve 278
 16.8.2. Reason 1: The Collection of PdM Data Is Not Viewed as Part of the Total Maintenance Process 278
 16.8.3. Reason 2: The Collected PdM Data Arrives Too Late to Prevent Equipment Failures 279
 16.8.4. Reason 3: Many Companies Fail to Take Advantage of Data from PLCs and DCSs 279
16.8.5. Reason 4: Most PdM Data Is Dispersed in Too Many Non-Integrated Databases 280
16.8.7. Summary 282

CHAPTER 17

MTBF Users Guide

17.1. Understanding Definitions 283
17.2. The MTBF Process 283
17.3. Example 284
 17.3.1. MTBF Percentage Change 284
 17.3.2. Total Plant MTBF 284
17.4. Summary 284

APPENDIX

A

Workflow for Planning

APPENDIX

B

Checklists and Forms

Glossary 315
Index 319