CHAPTER 1
Getting Started with PLLs
1.1 Definition and Operation
1.2 Phase-Lock Loop Literature
 1.2.1 Books
 1.2.2 Articles
 1.2.3 Background Books
 1.2.4 Web Sites
1.3 Loop Classifications
1.4 Example Applications
 1.4.1 History
 1.4.2 Doppler Radar
 1.4.3 Satellite Communications
 1.4.4 Cellular Phones
 1.4.5 Telecommunications Systems
Questions
References

CHAPTER 2
System Analysis
2.1 VCO Mathematical Description
2.2 Phase Detector Mathematical Relationship
2.3 PLL Transfer Function and Control-Systems Theory
2.4 Error Tracking
2.5 Type 2, Second-Order Active Loop-to-Servo Terminology
2.6 Loop Stability: Bode Plot Analysis
2.7 Loop Stability: Root-Locus Analysis
2.8 Charge Pump Synthesis Example of Loop-Component Values
2.9 Summary
Questions
References
CHAPTER 3

System Requirements 35

3.1 Noise Basics 35
 3.1.1 Sources of Noise 36
 3.1.2 Noise Models 41
 3.1.3 Equivalent Input Noise 44
 3.1.4 Noise Figure 48
 3.1.5 Bipolar Versus CMOS Noise Comparison 50

3.2 Phase-Noise and Oscillator Theory 53
 3.2.1 FM Theory 54
 3.2.2 Relationship of Phase Noise to FM 55
 3.2.3 Different Measures of Phase Noise 59
 3.2.4 Oscillator Design and Phase-Noise Modeling 63
 3.2.5 Negative-Resistance Oscillator Model 68
 3.2.6 Power Slopes of Oscillators 68
 3.2.7 Resonator Effects on Oscillator Phase Noise 72
 3.2.8 Allan Variance and Residual FM Calculations 74
 3.2.9 Phase Noise in PLLs 76

3.3 Jitter in PLLs 82
 3.3.1 Causes of Jitter 83
 3.3.2 Phase-Noise Analysis on Jitter 84
 3.3.3 Analysis of Spurious Signals on Jitter 91
 3.3.4 Spurious-Noise-Reduction Techniques 95

3.4 Time-Domain Solution 96
 3.4.1 Importance of Solving for the Time-Domain Response 96
 3.4.2 Time-Domain Solution Using La Place Transforms 97
 3.4.3 Relationship of Error Function to Closed Loop 103
 3.4.4 Output Responses to Unnormalized Input Steps 107
 3.4.5 Ramp Phase Solution 109
 3.4.6 Parabolic Phase Solution 110

3.5 Acquisition of Lock 112
 3.5.1 Derivation of the Second-Order, Nonlinear, Ordinary
 Differential Equation 114
 3.5.2 Simplifying and Normalizing the Nonlinear Equation 117
 3.5.3 Difference Equation for Making the Phase-Plane Trajectory
 Plot 118
 3.5.4 Unnormalized Solution 119
 3.5.5 Measured Step Responses Inside and Outside the Separatrix 121

3.6 Spurious Signals 123
 3.6.1 Intermodulation Products 124
 3.6.2 Minimizing the Generation of Reference Sidebands 130
 3.6.3 Noise-Reduction Techniques 145

3.7 Summary 154
 Questions 155
 References 159

Appendix 3A: Single-Ended Explanation of Offset Currents 161
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.4.6 Phase-Noise Measurement Equipment</td>
<td>371</td>
</tr>
<tr>
<td>7.4.7 Phase-Noise Measurements with the HP3048</td>
<td>372</td>
</tr>
<tr>
<td>7.4.8 Variations of the Carrier-Suppression Technique</td>
<td>373</td>
</tr>
<tr>
<td>7.5 Testing for Jitter</td>
<td>377</td>
</tr>
<tr>
<td>7.5.1 Oscilloscope Jitter Measurements</td>
<td>378</td>
</tr>
<tr>
<td>7.5.2 TIA and Spectrum Analyzer Jitter Measurements</td>
<td>380</td>
</tr>
<tr>
<td>7.5.3 Minimum Noise-Floor Measurements of TIA, Oscilloscope, and Digital Time Scope</td>
<td>382</td>
</tr>
<tr>
<td>7.5.4 Isolation Measurements Between PLLs in Silicon</td>
<td>384</td>
</tr>
<tr>
<td>7.5.5 Time-Jitter Test Setups</td>
<td>386</td>
</tr>
<tr>
<td>7.6 Noise Immunity to Injected Signals</td>
<td>388</td>
</tr>
<tr>
<td>7.6.1 Injected Signals into the Reference Input</td>
<td>388</td>
</tr>
<tr>
<td>7.6.2 Injected Signals on Supply</td>
<td>389</td>
</tr>
<tr>
<td>7.7 Power-On Switching Time</td>
<td>390</td>
</tr>
<tr>
<td>7.8 Oscillator Open-Loop Test</td>
<td>391</td>
</tr>
<tr>
<td>7.9 Test Equipment</td>
<td>393</td>
</tr>
<tr>
<td>7.10 Troubleshooting PLLs</td>
<td>397</td>
</tr>
<tr>
<td>7.10.1 Integrated Circuit</td>
<td>398</td>
</tr>
<tr>
<td>7.10.2 Functional Check</td>
<td>398</td>
</tr>
<tr>
<td>7.10.3 Requirement Compliance Checks</td>
<td>399</td>
</tr>
<tr>
<td>7.10.4 Simulation</td>
<td>400</td>
</tr>
<tr>
<td>Questions</td>
<td>401</td>
</tr>
<tr>
<td>References</td>
<td>403</td>
</tr>
</tbody>
</table>

CHAPTER 8

Simulation

8.1 Transistor Level 405
8.2 Behavioral Modeling of PLL with PSPICE 412
8.2.1 Example Behavioral Model of the 270-MHz PLL 414
8.2.2 Model for Error Tracking 418
8.2.3 Identifying Numerical Errors 419
8.3 Difference-Equation Modeling of PLLs 421
8.3.1 Review of Difference-Equation Derivation 422
8.3.2 Extending the Difference Equations for Computer Simulation 424
8.3.3 Example PLL 425
8.3.4 Unique Nonlinear Conditions Simulated by the Difference
Equation 431
Questions 443
References 444

CHAPTER 9

Applications and Extensions

9.1 Design Trade-Offs in Frequency Generation with PLLs 445
9.1.1 Classification 446
9.1.2 Direct Synthesis 447
9.1.3 Indirect Synthesis 450