An Introduction to Aqueous Electrolyte Solutions

Margaret Robson Wright
Formerly of St Andrews University, UK

John Wiley & Sons, Ltd
Contents

Preface xix

Preliminary Chapter Guidance to Student xxiii

List of symbols xxv

1 Concepts and Ideas: Setting the Stage 1

1.1 Electrolyte solutions – what are they? 2
1.2 Ions – simple charged particles or not? 4
 1.2.1 Simple properties of ions 4
 1.2.2 Modifications needed to these simple ideas: a summary 5
1.3 The solvent: structureless or not? 7
1.4 The medium: its structure and the effect of ions on this structure 8
1.5 How can these ideas help in understanding what might happen when an ion is put into a solvent? 9
1.6 Electrostriction 11
1.7 Ideal and non-ideal solutions – what are they? 11
 1.7.1 Solute–solute interactions, i.e. ion–ion interactions 12
 1.7.2 Solute–solvent interactions, i.e. ion–solvent interactions–collectively known as solvation 12
 1.7.3 Solvent–solvent interactions 13
1.8 The ideal electrolyte solution 14
1.9 The non-ideal electrolyte solution 14
1.10 Macroscopic manifestation of non-ideality 15
1.11 Species present in solution 17
1.12 Formation of ion pairs from free ions 17
 1.12.1 Charge distribution on the free ion and the ion pair 18
 1.12.2 Size of an ion and an ion pair in solution 19
1.13 Complexes from free ions 21
1.14 Complexes from ions and uncharged ligands 21
1.15 Chelates from free ions 22
1.16 Micelle formation from free ions 22
1.17 Measuring the equilibrium constant: general considerations 23
1.18 Base-lines for theoretical predictions about the behaviour expected for a solution consisting of free ions only, Debye–Hückel and Fuoss-Onsager theories and the use of Beer's Law 24
 1.18.1 Debye–Hückel and Fuoss-Onsager equations 24
 1.18.2 Beer's Law equation 25
CONTENTS

1.19 Ultrasonics
1.20 Possibility that specific experimental methods could distinguish between the various types of associated species
1.21 Some examples of how chemists could go about inferring the nature of the species present

2 The Concept of Chemical Equilibrium: An Introduction

- 2.1 Irreversible and reversible reactions
- 2.2 Composition of equilibrium mixtures, and the approach to equilibrium
- 2.3 Meaning of the term ‘position of equilibrium’ and formulation of the equilibrium constant
 - 2.3.1 Ideal and non-ideal equilibrium expressions
 - 2.3.2 Prediction of the ideal algebraic form of the equilibrium constant from the stoichiometric equation
- 2.4 Equilibrium and the direction of reaction
- 2.5 A searching problem
- 2.6 The position of equilibrium
- 2.7 Other generalisations about equilibrium
- 2.8 K and pK
- 2.9 Qualitative experimental observations on the effect of temperature on the equilibrium constant, K
- 2.10 Qualitative experimental observations on the effect of pressure on the equilibrium constant, K
- 2.11 Stoichiometric relations
- 2.12 A further relation essential to the description of electrolyte solutions – electrical neutrality

3 Acids and Bases: A First Approach

- 3.1 A qualitative description of acid–base equilibria
 - 3.1.1 Acidic behaviour
 - 3.1.2 Basic behaviour
- 3.2 The self ionisation of water
- 3.3 Strong and weak acids and bases
- 3.4 A more detailed description of acid–base behaviour
 - 3.4.1 The weak acid, e.g. benzoic acid
 - 3.4.2 The weak base, e.g. methylamine
 - 3.4.3 The amphoteric solvent water
- 3.5 Ampholytes
- 3.6 Other situations where acid/base behaviour appears
 - 3.6.1 Salts and buffers
- 3.7 Formulation of equilibrium constants in acid–base equilibria
- 3.8 Magnitudes of equilibrium constants
- 3.9 The self ionisation of water
- 3.10 Relations between K_a and K_b: expressions for an acid and its conjugate base and for a base and its conjugate acid
- 3.11 Stoichiometric arguments in equilibria calculations
- 3.12 Procedure for calculations on equilibria
4 Equilibrium Calculations for Acids and Bases

4.1 Calculations on equilibria: weak acids
- 4.1.1 Possible approximations for the weak acid
- 4.1.2 The weak acid where both approximations can be made
- 4.1.3 The weak acid where there is extensive ionisation and approximation 1 is invalid
- 4.1.4 The weak acid is sufficiently weak so that the self ionisation of water cannot be ignored and approximation 2 is invalid
- 4.1.5 Electrical neutrality

4.2 Some worked examples

4.3 Calculations on equilibria: weak bases
- 4.3.1 Possible approximations for the weak base
- 4.3.2 The weak base where both approximations can be made
- 4.3.3 The weak base where there is extensive protonation and approximation 1 is invalid
- 4.3.4 The weak base is sufficiently weak so that the self ionisation of water cannot be ignored and approximation 2 is invalid

4.4 Some illustrative problems

4.5 Fraction ionised and fraction not ionised for a weak acid; fraction protonated and fraction not protonated for a weak base

4.6 Dependence of the fraction ionised on pH
- 4.6.1 Maximum % ionised for a weak acid and maximum % protonated for a weak base

4.7. The effect of dilution on the fraction ionised for weak acids lying roughly in the range: $pK_a = 4.0$ to 10.0

4.8 Reassessment of the two approximations: a rigorous expression for a weak acid

4.9 Conjugate acids of weak bases

4.10 Weak bases

4.11 Effect of non-ideality

5 Equilibrium Calculations for Salts and Buffers

5.1 Aqueous solutions of salts

5.2 Salts of strong acids/strong bases

5.3 Salts of weak acids/strong bases

5.4 Salts of weak bases/weak acids
- 5.4.1 A more rigorous treatment of worked problem 5.1

5.5 Salts of weak acids/weak bases

5.6 Buffer solutions
- 5.6.1 Buffer: weak acid plus its salt with a strong base
- 5.6.2 The rigorous calculation for the buffer of a weak acid plus its salt with a strong base
- 5.6.3 Buffer: weak base plus its salt with a strong acid
- 5.6.4 The rigorous calculation for the buffer of a weak base plus its salt with a strong acid
- 5.6.5 Effect of dilution on buffering capacity
- 5.6.6 Effect of addition of H_3O^+ or OH^- on the pH of a buffer
- 5.6.7 Effect of addition of H_3O^+ or OH^- on the pH of a weak acid on its own
- 5.6.8 Buffer capacity
6 Neutralisation and pH Titration Curves

6.1 Neutralisation

6.2 pH titration curves
 6.2.1 Neutralisation of a strong acid by a strong base, e.g. HCl(aq) with NaOH(aq)
 6.2.2 Neutralisation of a strong base by a strong acid, e.g. NaOH(aq) with HCl(aq)
 6.2.3 Neutralisation of a weak acid by a strong base, e.g. CH₃COOH(aq) with NaOH(aq)
 6.2.4 Neutralisation of a weak base by a strong acid, e.g. NH₃(aq) with HCl(aq)

6.3 Interpretation of pH titration curves

6.4 Polybasic acids
 6.4.1 Analysis of polybasic pH titration curves
 6.4.2 A dibasic acid with two apparently separated pK values, e.g. malonic acid

6.5 pH titrations of dibasic acids: the calculations
 6.5.1 The beginning of the titration
 6.5.2 The first equivalence point
 6.5.3 The first buffer region
 6.5.4 Analysis of the first buffer region
 6.5.5 The second equivalence point
 6.5.6 The second buffer region

6.6 Tribasic acids
 6.6.1 Analysis of the titration curve
 6.6.2 An important thought

6.7 Ampholytes
 6.7.1 Analysis of the titration curves for aliphatic and aromatic amino acids, and amino phenols

7 Ion Pairing, Complex Formation and Solubilities

7.1 Ion pair formation

7.2 Complex formation
 7.2.1 Fractions associated
 7.2.2 Mean number of ligands bound
 7.2.3 Equilibria calculations
 7.2.4 Determination of \(\beta_1, \beta_2, \ldots \) from the dependence of \(\alpha_0 \) on \([L]_{\text{actual}}\)
 7.2.5 Determination of \(\beta_1, \beta_2, \ldots \) from the dependence of \(n \) on \([L]_{\text{actual}}\)

7.3 Solubilities of sparingly soluble salts
 7.3.1 Formulation of the solubility product in terms of the solubility
 7.3.2 Solubility relations when a sparingly soluble salt is dissolved in a solution containing one of the ions of the solid: the common ion effect
 7.3.3 Possibility or otherwise of precipitation of a sparingly soluble salt when two solutions containing the relevant ions are mixed
 7.3.4 The effect of complexing on solubility equilibria
 7.3.5 Another interesting example
 7.3.6 Further examples of the effect of complexing on solubility

8 Practical Applications of Thermodynamics for Electrolyte Solutions

8.1 The first law of thermodynamics

8.2 The enthalpy, \(H \)
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3 The reversible process</td>
<td>217</td>
</tr>
<tr>
<td>8.4 The second law of thermodynamics</td>
<td>217</td>
</tr>
<tr>
<td>8.5 Relations between q, w and thermodynamic quantities</td>
<td>218</td>
</tr>
<tr>
<td>8.6 Some other definitions of important thermodynamic functions</td>
<td>218</td>
</tr>
<tr>
<td>8.7 A very important equation which can now be derived</td>
<td>218</td>
</tr>
<tr>
<td>8.8 Relation of emfs to thermodynamic quantities</td>
<td>219</td>
</tr>
<tr>
<td>8.9 The thermodynamic criterion of equilibrium</td>
<td>220</td>
</tr>
<tr>
<td>8.10 Some further definitions: standard states and standard values</td>
<td>221</td>
</tr>
<tr>
<td>8.11 The chemical potential of a substance</td>
<td>221</td>
</tr>
<tr>
<td>8.12 Criterion of equilibrium in terms of chemical potentials</td>
<td>222</td>
</tr>
<tr>
<td>8.13 Chemical potentials for solids, liquids, gases and solutes</td>
<td>223</td>
</tr>
<tr>
<td>8.14 Use of the thermodynamic criterion of equilibrium in the derivation of the algebraic form of the equilibrium constant</td>
<td>224</td>
</tr>
<tr>
<td>8.15 The temperature dependence of ΔH°</td>
<td>230</td>
</tr>
<tr>
<td>8.16 The dependence of the equilibrium constant, K, on temperature</td>
<td>231</td>
</tr>
<tr>
<td>8.16.1 Calculation of ΔH° from two values of K</td>
<td>231</td>
</tr>
<tr>
<td>8.16.2 Determination of ΔH° from values of K over a range of temperatures</td>
<td>231</td>
</tr>
<tr>
<td>8.17 The microscopic statistical interpretation of entropy</td>
<td>236</td>
</tr>
<tr>
<td>8.17.1 The statistical mechanical interpretation of entropy</td>
<td>236</td>
</tr>
<tr>
<td>8.17.2 The order/disorder interpretation of entropy</td>
<td>236</td>
</tr>
<tr>
<td>8.18 Dependence of K on pressure</td>
<td>237</td>
</tr>
<tr>
<td>8.19 Dependence of ΔG° on temperature</td>
<td>242</td>
</tr>
<tr>
<td>8.20 Dependence of ΔS° on temperature</td>
<td>242</td>
</tr>
<tr>
<td>8.21 The non-ideal case</td>
<td>244</td>
</tr>
<tr>
<td>8.21.1 Non-ideality in electrolyte solutions</td>
<td>244</td>
</tr>
<tr>
<td>8.21.2 The ionic strength and non-ideality</td>
<td>244</td>
</tr>
<tr>
<td>8.22 Chemical potentials and mean activity coefficients</td>
<td>247</td>
</tr>
<tr>
<td>8.23 A generalisation</td>
<td>251</td>
</tr>
<tr>
<td>8.24 Corrections for non-ideality for experimental equilibrium constants</td>
<td>258</td>
</tr>
<tr>
<td>8.24.1 Dependence of equilibrium constants on ionic strength</td>
<td>258</td>
</tr>
<tr>
<td>8.25 Some specific examples of the dependence of the equilibrium constant on ionic strength</td>
<td>263</td>
</tr>
<tr>
<td>8.25.1 The case of acid/base equilibria</td>
<td>263</td>
</tr>
<tr>
<td>8.25.2 The weak acid where both approximations are valid</td>
<td>263</td>
</tr>
<tr>
<td>8.25.3 The weak acid where there is extensive ionisation</td>
<td>266</td>
</tr>
<tr>
<td>8.26 Graphical corrections for non-ideality</td>
<td>270</td>
</tr>
<tr>
<td>8.27 Comparison of non-graphical and graphical methods of correcting for non-ideality</td>
<td>270</td>
</tr>
<tr>
<td>8.28 Dependence of fraction ionised and fraction protonated on ionic strength</td>
<td>271</td>
</tr>
<tr>
<td>8.29 Thermodynamic quantities and the effect of non-ideality</td>
<td>271</td>
</tr>
</tbody>
</table>

9 Electrochemical Cells and EMFs 273

9.1 Chemical aspects of the passage of an electric current through a conducting medium | 274
9.2 Electrolysis | 275
| 9.2.1 Quantitative aspects of electrolysis | 278
| 9.2.2 A summary of electrolysis | 279
9.3 Electrochemical cells | 280
| 9.3.1 The electrochemical cell operating irreversibly or reversibly | 280
| 9.3.2 Possible sources of confusion | 280
| 9.3.3 Cells used as batteries as a source of current, i.e. operating irreversibly | 280
| 9.3.4 Cells operating reversibly and irreversibly | 284
| 9.3.5 Conditions for reversibility of cells | 285
9.4 Some examples of electrodes used in electrochemical cells
 9.4.1 Gas electrodes
 9.4.2 Metal electrode dipping into an aqueous solution of its ions
 9.4.3 Metal coated with a sparingly soluble compound of the metal dipping into an aqueous solution containing the anion of the sparingly soluble compound
 9.4.4 The redox electrode
 9.4.5 Reactions occurring at the electrodes in a redox cell
 9.4.6 The amalgam electrode
 9.4.7 Glass electrodes
9.5 Combination of electrodes to make an electrochemical cell
9.6 Conventions for writing down the electrochemical cell
 9.6.1 Use of a voltmeter to determine the polarity of the electrodes
9.7 One very important point: cells corresponding to a ‘net chemical reaction’
9.8 Liquid junctions in electrochemical cells
 9.8.1 Cells without liquid junction
 9.8.2 Cells with liquid junction
 9.8.3 Types of liquid junctions
 9.8.4 Cells with a liquid junction consisting of a narrow tube: a cell with transference
 9.8.5 Cells with a porous pot separating two solutions: a cell with transference
 9.8.6 Cells with a salt bridge: cells without transference
9.9 Experimental determination of the direction of flow of the electrons, and measurement of the potential difference
9.10 Electrode potentials
 9.10.1 Redox potentials
 9.10.2 Electrode potentials for standard and non-standard conditions
9.11 Standard electrode potentials
 9.11.1 Standard redox potentials
9.12 Potential difference, electrical work done and ΔG for the cell reaction
 9.12.1 Thermodynamic quantities in electrochemistry: relation of ΔG to E
 9.12.2 Thermodynamic quantities in electrochemistry: effect of temperature on emf
9.13 ΔG for the cell process: the Nernst equation
 9.13.1 Corrections for non-ideality
 9.13.2 A further example deducing the Nernst equation and the dependence of emf on ionic strength
9.14 Methods of expressing concentration
9.15 Calculation of standard emfs values for cells and ΔG° values for reactions
9.16 Determination of pH
9.17 Determination of equilibrium constants for reactions where K is either very large or very small
9.18 Use of concentration cells
9.19 ‘Concealed’ concentration cells and similar cells
9.20 Determination of equilibrium constants and pK values for reactions which are not directly that for the cell reaction
 9.20.1 Determination of pK values for the ionisation of weak acids and weak bases, and for the self ionisation of $H_2O(l)$
 9.20.2 Solubility products
 9.20.3 A further use of cells to gain insight into what is occurring in an electrode compartment – ion pair formation
CONTENTS

9.20.4 Complex formation 336
9.20.5 Use of cells to determine mean activity coefficients and their dependence on ionic strength 337

9.21 Use of concentration cells with and without liquid junctions in the determination of transport numbers
9.21.1 Use of cells with and without transference in determination of the transport numbers of large ions 347

10 Concepts and Theory of Non-ideality 349

10.1 Evidence for non-ideality in electrolyte solutions 350
10.2 The problem theoretically 351
10.3 Features of the simple Debye-Hückel model
10.3.1 Naivety of the Debye-Hückel theory 353

10.4 Aspects of electrostatics which are necessary for an understanding of the procedures used in the Debye-Hückel theory and conductance theory 353
10.4.1 The electric field, force of interaction and work done 353
10.4.2 Coulomb’s Law 355
10.4.3 Work done and potential energy of electrostatic interactions 355
10.4.4 The relation between the forces of interaction between two charges and the electric fields associated with each of them 358
10.4.5 The relation between the electrostatic potential energy and the electrostatic potential 359
10.4.6 Relation between the electric field and the electrostatic potential 359

10.5 The ionic atmosphere in more detail 360
10.5.1 A summary 362

10.6 Derivation of the Debye-Hückel theory from the simple Debye-Hückel model 363
10.6.1 Step 1 Stating the problem 363
10.6.2 Step 2 The problem is to calculate ψ_j^n in terms of other calculable potentials, but what are these? 364
10.6.3 Step 3 The question now is: is there anything in physics, that is, in electrostatic theory, which would enable this to be done? 365
10.6.4 Translating the Poisson equation directly to the case of an electrolyte in solution 365
10.6.5 Step 4 How can the distribution of the discrete ions in the ionic atmosphere of the j-ion be described? 366
10.6.6 The two basic equations 367
10.6.7 Step 5 The problem is to combine the Poisson equation with the Maxwell-Boltzmann equation – how can this be done? 368
10.6.8 Step 6 Combining the Poisson and Maxwell-Boltzmann equations 370
10.6.9 Step 7 Solving the Poisson-Boltzmann equation 370
10.6.10 Expansion and approximation of the Poisson-Boltzmann equation to one non-zero term only 371
10.6.11 The ionic strength 372
10.6.12 The next step is to solve the truncated Poisson-Boltzmann equation 372
10.6.13 Step 8 Calculation of the potential at the surface of the central j-ion due to the ionic atmosphere, and thence finding the electrostatic energy of interaction between an ion and its ionic atmosphere 373
10.6.14 Calculation of ψ_j^n by substitution of $r = \delta$ in Equation (10.48) 374
10.6.15 Step 9 The problem is to calculate the mean ionic activity coefficient, γ_\pm 375
10.6.16 Constants appearing in the Debye-Hückel expression 377
10.6.17 The physical significance of κ^{-1} and ρ_j 377

10.7 The Debye-Hückel limiting law 380
10.8 Shortcomings of the Debye-Hückel model 382
10.8.1 Strong electrolytes are completely dissociated
10.8.2 Random motion is not attained
10.8.3 Non-ideality results from coulombic interactions between ions
10.8.4 Ions are spherically symmetrical and are unpolarisable
10.8.5 The solvent is a structureless dielectric
10.8.6 Electrostriction is ignored
10.8.7 Concept of a smeared out spherically symmetrical charge density

10.9 Shortcomings in the mathematical derivation of the theory
10.10 Modifications and further developments of the theory
10.10.1 Empirical methods
10.10.2 Empirical extension using a term linear in ionic strength
10.10.1 An explanation of the statement that if an electrolyte is associated
then the graph of $\log_{10} \gamma_{\pm} \cdot \sqrt{i}$ will approach the
Debye-Hückel slope from below
10.10.2 Unknown parameters in the Debye-Hückel extended equation when
association occurs

10.11 Evidence for ion association from Debye-Hückel plots
10.11.1 The graph at the heart of the Bjerrum theory
10.11.2 The theoretical expression for the association constant for symmetrical
electrolytes
10.11.3 Calculation of β from the Bjerrum theory
10.11.4 Extension to account for non-ideality
10.11.5 Critique of Bjerrum’s theory
10.11.6 Fuoss ion pairs and others

10.12 The Bjerrum theory of ion association
10.12.1 The graph at the heart of the Bjerrum theory
10.12.2 The theoretical expression for the association constant for symmetrical
electrolytes
10.12.3 Calculation of β from the Bjerrum theory
10.12.4 Extension to account for non-ideality
10.12.5 Critique of Bjerrum’s theory
10.12.6 Fuoss ion pairs and others

10.13 Extensions to higher concentrations
10.13.1 Guggenheim’s numerical integration
10.13.2 Extensions to higher concentrations: Davies’ equation

10.14 Modern developments in electrolyte theory

10.15 Computer simulations
10.15.1 Monte Carlo calculations
10.15.2 Molecular dynamics

10.16 Further developments to the Debye-Hückel theory
10.16.1 Developments from the Gurney concept of the co-sphere: a new model
10.16.2 The unmodified Debye-Hückel theory
10.16.3 A first modification to the simple Debye-Hückel model
10.16.4 A less simple Gurney model: a second modification to the Debye-Hückel model
10.16.5 A less simple Gurney model: a third modification to the Debye-Hückel model
10.16.6 A further modification involving a ‘cavity’ term
10.16.7 Use of these ideas in producing a new treatment

10.17 Statistical mechanics and distribution functions
10.17.1 The simplest situation: the radial distribution function of the Debye-Hückel theory
10.17.2 More complex distribution functions
10.17.3 Contributions to the total potential energy of the electrolyte solution

10.18 Application of distribution functions to the determination of activity coefficients due
 to Kirkwood; Yvon; Born and Green; and Bogolyubov
10.18.1 Using distribution functions to formulate a new quantity G
10.19 A few examples of results from distribution functions
10.20 ‘Born-Oppenheimer level’ models
10.21 Lattice calculations for concentrated solutions
11 Conductance: The Ideal Case

11.1 Aspects of physics relevant to the experimental study of conductance in solution
11.1.1 Ohm's Law
11.1.2 The electric field
11.2 Experimental measurement of the conductivity of a solution
11.3 Corrections to the observed conductivity to account for the self ionisation of water
11.4 Conductivities and molar conductivities: the ideal case
11.5 The physical significance of the molar conductivity, A
11.6 Dependence of molar conductivity on concentration for a strong electrolyte: the ideal case
11.7 Dependence of molar conductivity on concentration for a weak electrolyte: the ideal case
11.8 Determination of A°
11.9 Simultaneous determination of K and A°
11.10 Problems when an acid or base is so weak that it is never 100% ionised, even in very, very dilute solution
11.11 Contributions to the conductivity of an electrolyte solution from the cation and the anion of the electrolyte
11.12 Contributions to the molar conductivity from the individual ions
11.13 Kohlrausch's law of independent ionic mobilities
11.14 Analysis of the use of conductance measurements for determination of pKₐ's for very weak acids and pKₐ's for very weak bases: the basic quantities involved
11.14.1 Analysis of the use of conductance measurements for determination of pKₐ's for very weak acids and pKₐ's for very weak bases: the argument
11.14.2 Application of the above analysis to the cases of weak acids and weak bases for which the relation \(\alpha = A/A° \) is taken to be valid and \(\alpha \to 1 \) as \(c \to 0 \)
11.15 Use of conductance measurements in determining solubility products for sparingly soluble salts
11.16 Transport numbers
11.17 Ionic mobilities
11.18 Abnormal mobility and ionic molar conductivity of H₃O⁺(aq)
11.19 Measurement of transport numbers
11.19.1 The Hittorf method for determining transport numbers
11.19.2 The moving boundary method
11.19.3 The argument for the unsymmetrical electrolyte
11.19.4 The fundamental basis of the moving boundary method
11.19.5 Summary of the use made of transport numbers and mobilities

12 Theories of Conductance: The Non-ideal Case for Symmetrical Electrolytes

12.1 The relaxation effect
12.1.1 Approximate estimate of the relaxation time for the ionic atmosphere
12.1.2 Confirmation of the existence of the ionic atmosphere
12.1.3 The relaxation time and the Debye-Falkenhagen effect, i.e. the effect of high frequencies
12.1.4 The relaxation time and the Wien effect, i.e. the effect of very large fields
12.2 The electrophoretic effect
CONTENTS

12.3 Conductance equations for strong electrolytes taking non-ideality into consideration: early conductance theory

12.3.1 Qualitative aspects of the derivation of the Debye-Hückel-Onsager 1927 equation 480

12.4 A simple treatment of the derivation of the Debye-Hückel-Onsager equation 1927 for symmetrical electrolytes

12.4.1 Step 1 Stating the problem 483

12.4.2 Step 2 The contribution at infinite dilution resulting from a balance of the effects of the field and the frictional force on the moving ion 483

12.4.3 Step 3 The contribution from the electrophoretic effect 484

12.4.4 Step 4 The contribution from the relaxation effect 485

12.4.5 Step 5 The Final step in arriving at the conductance equation for symmetrical electrolytes 486

12.5 The Fuoss-Onsager equation 1932 488

12.6 Use of the Debye-Hückel-Onsager equation for symmetrical strong electrolytes which are fully dissociated

12.6.1 Assessment of experimental results for 1-1, 1-2 and 1-3 electrolytes in concentration ranges where they are expected to be fully dissociated 489

12.7 Electrolytes showing ion pairing and weak electrolytes which are not fully dissociated

12.7.1 Calculation of Λ^0, α and K_{dissoc} for weak electrolytes and ion pairs using the Debye-Hückel-Onsager equation 492

12.8 Empirical extensions to the Debye-Hückel-Onsager 1927 equation 492

12.9 Modern conductance theories for symmetrical electrolytes – post 1950 493

12.10 Fuoss-Onsager 1957: Conductance equation for symmetrical electrolytes

12.10.1 Use of the Fuoss-Onsager equation to determine Λ^0 and α 498

12.10.2 Implications of the Fuoss-Onsager equation for unassociated symmetrical electrolytes 498

12.11 A simple illustration of the effects of ion association on experimental conductance curves 500

12.12 The Fuoss-Onsager equation for associated electrolytes

12.12.1 Determination of Λ^0, $K_{\text{association}}$ and α using the Fuoss-Onsager equation for associated electrolytes 503

12.13 Range of applicability of Fuoss-Onsager 1957 conductance equation for symmetrical electrolytes 503

12.14 Limitations of the treatment given by the 1957 Fuoss-Onsager conductance equation for symmetrical electrolytes 504

12.15 Manipulation of the 1957 Fuoss-Onsager equation, and later modifications by Fuoss and other workers 505

12.16 Conductance studies over a range of relative permittivities 506

12.17 Fuoss et al. 1978 and later

12.17.1 The fraction of ions which are free to conduct the current 511

12.17.2 The Fuoss 1978 equation for associated symmetrical electrolytes 512

Appendix 1 512

Appendix 2 515

13 Solvation

13.1 Classification of solutes: a resumé 518

13.2 Classification of solvents 518

13.3 Solvent structure

13.3.1 Liquid water as a solvent 519
13.3.2 H-bonding in water
13.4 The experimental study of the structure of water
13.5 Diffraction studies
 13.5.1 Determination of the number of H_2O molecules corresponding to each peak and the three-dimensional arrangement corresponding to each peak
 13.5.2 Results of diffraction studies: the structure of liquid water
13.6 The theoretical approach to the radial distribution function for a liquid
13.7 Aqueous solutions of electrolytes
 13.7.1 Effect of ions on the relative permittivity of water
13.8 Terms used in describing hydration
 13.8.1 Solvation shell
 13.8.2 Bound and non-bound water
 13.8.3 Further terms: primary and secondary solvation
13.9 Traditional methods for measuring solvation numbers
 13.9.1 Vibrational spectra (IR and Raman) and electronic spectra (UV, visible and in some cases IR)
 13.9.2 Transport phenomena
 13.9.3 Relative permittivity of the solution
 13.9.4 Activity measurements
13.10 Modern techniques for studying hydration: NMR
 13.10.1 Limitations of NMR
 13.10.2 Slow exchanges of water molecules
 13.10.3 Fast exchanges of water molecules
 13.10.4 Results of NMR studies of hydration
 13.10.5 Residence times from NMR and ultrasonic relaxation
13.11 Modern techniques of studying hydration: neutron and X-ray diffraction
 13.11.1 Neutron diffraction with isotope substitution
13.12 Modern techniques of studying solvation: AXD diffraction and EXAFS
13.13 Modern techniques of studying solvation: computer simulations
13.14 Cautionary remarks on the significance of the numerical values of solvation numbers
13.15 Sizes of ions
13.16 A first model of solvation – the three region model for aqueous electrolyte solutions
 13.16.1 Structure making and structure breaking ions
 13.16.2 Evidence for structure making/structure breaking
 13.16.3 A first attempt at classification
 13.16.4 Thermodynamic evidence
 13.16.5 Determination of partial molar entropies for individual ions
 13.16.6 Standard entropies of hydration
 13.16.7 Significance of entropies of hydration for structure making/breaking
13.17 Volume changes on solvation
13.18 Viscosity data
13.19 Concluding comment
13.20 Determination of $\Delta G_{\text{hydration}}^o$
13.21 Determination of $\Delta H_{\text{hydration}}^o$
13.22 Compilation of entropies of hydration from $\Delta G_{\text{hydration}}^o$ and $\Delta H_{\text{hydration}}^o$
13.23 Thermodynamic transfer functions
13.24 Solvation of non-polar and apolar molecules – hydrophobic effects
13.25 Experimental techniques for studying hydrophobic hydration
 13.25.1 Results of methods (i) and (ii)
 13.25.2 Results of thermodynamic studies
 13.25.3 Entropies of hydration at infinite dilution, ΔS^o
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.25.4</td>
<td>ΔV^e of solvation at infinite dilution</td>
<td>557</td>
</tr>
<tr>
<td>13.25.5</td>
<td>Thermodynamic transfer functions</td>
<td>557</td>
</tr>
<tr>
<td>13.26</td>
<td>Hydrophobic hydration for large charged ions</td>
<td>559</td>
</tr>
<tr>
<td>13.27</td>
<td>Hydrophobic interaction</td>
<td>560</td>
</tr>
<tr>
<td>13.28</td>
<td>Computer simulations of the hydrophobic effect</td>
<td>560</td>
</tr>
</tbody>
</table>

Subject Matter of Worked Problems

561

Index

563