Contents

Introduction
- Introduction .. 1

Part I Thermodynamics of Ensembles of Classical Particles

1 **Excitations in Simple Atomic Ensembles** .. 7
 1.1 Thermodynamics and Dynamics of Particle Ensembles 7
 1.2 Interaction of Inert Gas Atoms 9
 1.3 Similarity Law for Simple Atomic Ensembles 13
 1.4 Evolution of Particle Ensembles 13
 1.5 Voids as Elementary Configurational Excitations 17

2 **Structures of Ensembles of Interacting Particles** 21
 2.1 Close-Packed Structures 21
 2.2 Shells in Close-Packed Structures 24
 2.3 Lennard-Jones Crystal ... 27
 2.4 Morse Crystal .. 29
 2.5 Surface Energy of Lennard-Jones and Morse Crystals 30
 2.6 Solid and Liquid Inert Gases Near the Triple Point 33

3 **Thermodynamics of Dense Gases and Liquids** 39
 3.1 Equation of State for an Ensemble
 of Randomly Distributed Particles 39
 3.2 Equilibrium of Gas and Condensed States 42
 3.3 Liquid Surface Parameters 45
 3.4 Peculiarities of Similarity for Inert Gases 47
 3.5 Scaling Law for Molecular Systems 48

4 **Clusters with Short-Range Interaction** 51
 4.1 Configurations of Solid Clusters
 with Pairwise Atomic Interactions 51
8 Contents

4.2 Peculiarities of Close-Packed Clusters
 with Short-Range Interaction 53
4.3 Constructing fcc-Clusters with Short-Range Interaction 54
4.4 Growth of fcc Clusters
 with Short-Range Atomic Interaction 56
4.5 Regular Clusters of Close-Packed Structures 59
4.6 Icosahedral Clusters 64
4.7 Competition of Icosahedral and Close-Packed Structures 67

5 Ensembles of Classical Particles with Repulsion 75
5.1 Thermodynamics of Ensembles of Repelling Particles 75
5.2 A System of Hard Spheres 77
5.3 Colloid Suspensions as Systems of Repelling Particles 80
5.4 Virial Theorem and Instability of Crystal Structure 82
5.5 Phase Transition for an Ensemble of Repelling Atoms 88
5.6 Phase Transitions in Inert Gases under High Pressure 90
5.7 Structures of an Ensemble of Repelling Particles
 at Low Temperatures 94

Part II Configurational Excitations and Aggregate States
of Ensembles of Classical Particles

6 Configurational Excitation and Voids in Ensembles
of Bound Classical Atoms 99
6.1 Separation of Thermal and Configurational Degrees
 of Freedom of Clusters 99
6.2 Lattice Model for the Order-Disorder Phase Transition 100
6.3 Chemical Equilibria and Phase Transitions 102
6.4 Internal Voids in a System of Identical Particles 105
6.5 Void Formation in Two Dimensions 109
6.6 The Cell Model for Disk Particles 113
6.7 Peculiarities of Configurational Excitation
 for Bulk Atomic Systems 115
6.8 Two-State Approximation for Aggregate States 117

7 Configurational Cluster Excitation
with Pairwise Interactions 121
7.1 Peculiarities of Configurational Excitation of Clusters 121
7.2 Structural Phase Transition in a Solid Cluster 127
7.3 Configurational Excitation of the Icosahedral Cluster
 of 13 Atoms ... 131
7.4 The Cluster as a Microcanonical Ensemble of Bound Atoms ... 134
7.5 The Cluster as a Canonical Ensemble of Bound Atoms 137
7.6 Configurational Excitation of the Icosahedral Cluster of 55 Atoms .. 140
7.7 Character of Configuration Transitions in Clusters .. 146

8 Phase Transitions in Macroscopic Systems of Atoms 149
8.1 Configurational Excitation of a Solid .. 149
8.2 Modified Lattice Model for Configurational Excitation 151
8.3 Parameters of Voids for Liquid Inert Gases 153
8.4 Voids in a Macroscopic System of Bound Atoms 157
8.5 Criterion of Existence of the Liquid State 157
8.6 Freezing Points for Bulk Inert Gases 160
8.7 General Liquid Properties .. 161

9 Melting of Clusters and Bulk Atomic Ensembles 163
9.1 Entanglement of Thermal and Configurational Excitations in Clusters .. 163
9.2 Parameters of Melting .. 165
9.3 Contradiction Between the Melting Criterion and Its Nature 170
9.4 Definition of the Cluster Aggregate State 171
9.5 Voids as Gateways to Fluidity .. 173
9.6 Liquid-Gas Interface .. 175

Part III Dynamics of Configurational Excitations in Ensembles of Classical Particles

10 Coexistence of Cluster Phases ... 179
10.1 Hierarchy of Equilibrium Times in Clusters 179
10.2 Character of Phase Coexistence in Clusters: Surface Melting 181
10.3 Two-Temperature Regime for Cluster Equilibrium 185
10.4 Entropy of an Isolated Cluster in the Two-State Approach 187
10.5 Temperatures of an Isolated Cluster Near the Melting Point 189
10.6 Cluster Heat Capacity Near the Phase Transition 192

11 Glassy States of an Ensemble of Bound Atoms 199
11.1 Glassy State from the Void Standpoint 199
11.2 Diffusion of Voids in a Bulk Ensemble of Atoms 200
11.3 Cell Model for Vacancy Diffusion Coefficients 202
11.4 Kinetics of Transitions Between Aggregate States 204
11.5 Formation of a Glassy State ... 206
11.6 Saturated Vapor Pressure Over a Surface in a Glassy State 207
11.7 Glassy State for an Ensemble of Repelling Particles 211
11.8 More Peculiarities of Glassy States for Simple Atomic Systems 213
X Contents

12 Transport of Voids in Nucleation Processes 217
 12.1 Peculiarities of Nucleation Processes 217
 12.2 Transport of Voids in a Nonuniform Bulk Atomic System 219
 12.3 Growth of a Solid Cluster Inside a Liquid
 as Transport of Voids 222
 12.4 Wave Mechanism of the Phase Transition 225

13 Conclusion and Summary .. 231

References ... 233

Index ... 243