Contents

Series Preface xiii
Preface xv
Introduction xix

1 Human Color Vision 1
1.1 Optics of the Eye 1
1.2 The Retina 6
1.3 Visual Signal Processing 12
1.4 Mechanisms of Color Vision 17
1.5 Spatial and Temporal Properties of Color Vision 26
1.6 Color Vision Deficiencies 30
1.7 Key Features for Color Appearance Modeling 34

2 Psychophysics 35
2.1 Psychophysics Defined 36
2.2 Historical Context 37
2.3 Hierarchy of Scales 40
2.4 Threshold Techniques 42
2.5 Matching Techniques 45
2.6 One-Dimensional Scaling 46
2.7 Multidimensional Scaling 49
2.8 Design of Psychophysical Experiments 50
2.9 Importance in Color Appearance Modeling 52

3 Colorimetry 53
3.1 Basic and Advanced Colorimetry 53
3.2 Why is Color? 54
3.3 Light Sources and Illuminants 55
3.4 Colored Materials 59
3.5 The Human Visual Response 66
3.6 Tristimulus Values and Color Matching Functions 70
3.7 Chromaticity Diagrams 77
3.8 CIE Color Spaces 78
3.9 Color Difference Specification 80
3.10 The Next Step 82
4 Color Appearance Terminology
4.1 Importance of Definitions 83
4.2 Color 84
4.3 Hue 85
4.4 Brightness and Lightness 86
4.5 Colorfulness and Chroma 87
4.6 Saturation 88
4.7 Unrelated and Related Colors 88
4.8 Definitions in Equations 90
4.9 Brightness–Colorfulness vs Lightness–Chroma 91

5 Color Order Systems
5.1 Overview and Requirements 94
5.2 The Munsell Book of Color 96
5.3 The Swedish Natural Color System (NCS) 99
5.4 The Colorcurve System 102
5.5 Other Color Order Systems 103
5.6 Uses of Color Order Systems 106
5.7 Color Naming Systems 109

6 Color Appearance Phenomena
6.1 What Are Color Appearance Phenomena? 111
6.2 Simultaneous Contrast, Crispening, and Spreading 113
6.3 Bezold-Brücke Hue Shift (Hue Changes with Luminance) 116
6.4 Abney Effect (Hue Changes with Colorimetric Purity) 117
6.5 Helmholtz-Kohlrausch Effect (Brightness Depends on Luminance and Chromaticity) 119
6.6 Hunt Effect (Colorfulness Increases with Luminance) 120
6.7 Stevens Effect (Contrast Increases with Luminance) 122
6.8 Helson-Judd Effect (Hue of Nonselective Samples) 123
6.9 Bartleson-Breneman Equations (Image Contrast Changes with Surround) 125
6.10 Discounting the Illuminant 127
6.11 Other Context and Structural Effects 127
6.12 Color Constancy? 132

7 Viewing Conditions
7.1 Configuration of the Viewing Field 134
7.2 Colorimetric Specification of the Viewing Field 138
7.3 Modes of Viewing 141
7.4 Unrelated and Related Colors Revisited 144

8 Chromatic Adaptation
8.1 Light, Dark, and Chromatic Adaptation 146
8.2 Physiology 149
8.3 Sensory and Cognitive Mechanisms 157
8.4 Corresponding-colors Data 159
8.5 Models 162
8.6 Computational Color Constancy 164

9 Chromatic Adaptation Models 166
9.1 von Kries Model 168
9.2 Retinex Theory 171
9.3 Nayatani et al. Model 172
9.4 Guth’s Model 174
9.5 Fairchild’s Model 177
9.6 Herding CATs 179
9.7 CAT02 181

10 Color Appearance Models 183
10.1 Definition of Color Appearance Models 183
10.2 Construction of Color Appearance Models 184
10.3 CIELAB 185
10.4 Why Not Use Just CIELAB? 193
10.5 What About CIELUV? 194

11 The Nayatani et al. Model 196
11.1 Objectives and Approach 196
11.2 Input Data 197
11.3 Adaptation Model 198
11.4 Opponent Color Dimensions 200
11.5 Brightness 201
11.6 Lightness 202
11.7 Hue 202
11.8 Saturation 203
11.9 Chroma 203
11.10 Colorfulness 204
11.11 Inverse Model 204
11.12 Phenomena Predicted 205
11.13 Why Not Use Just the Nayatani et al. Model? 205

12 The Hunt Model 208
12.1 Objectives and Approach 208
12.2 Input Data 209
12.3 Adaptation Model 211
12.4 Opponent Color Dimensions 215
12.5 Hue 216
12.6 Saturation 217
12.7 Brightness 218
12.8 Lightness 220
12.9 Chroma 220
12.10 Colorfulness 220
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>11</td>
<td>Inverse Model</td>
<td>221</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>Phenomena Predicted</td>
<td>222</td>
</tr>
<tr>
<td>12</td>
<td>13</td>
<td>Why Not Use Just the Hunt Model?</td>
<td>224</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>The RLAB Model</td>
<td>225</td>
</tr>
<tr>
<td>13</td>
<td>1.1</td>
<td>Objectives and Approach</td>
<td>225</td>
</tr>
<tr>
<td>13</td>
<td>1.2</td>
<td>Input Data</td>
<td>227</td>
</tr>
<tr>
<td>13</td>
<td>1.3</td>
<td>Adaptation Model</td>
<td>228</td>
</tr>
<tr>
<td>13</td>
<td>1.4</td>
<td>Opponent Color Dimensions</td>
<td>230</td>
</tr>
<tr>
<td>13</td>
<td>1.5</td>
<td>Lightness</td>
<td>232</td>
</tr>
<tr>
<td>13</td>
<td>1.6</td>
<td>Hue</td>
<td>232</td>
</tr>
<tr>
<td>13</td>
<td>1.7</td>
<td>Chroma</td>
<td>234</td>
</tr>
<tr>
<td>13</td>
<td>1.8</td>
<td>Saturation</td>
<td>234</td>
</tr>
<tr>
<td>13</td>
<td>1.9</td>
<td>Inverse Model</td>
<td>234</td>
</tr>
<tr>
<td>13</td>
<td>1.10</td>
<td>Phenomena Predicted</td>
<td>236</td>
</tr>
<tr>
<td>13</td>
<td>1.11</td>
<td>Why Not Use Just the RLAB Model?</td>
<td>236</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>Other Models</td>
<td>238</td>
</tr>
<tr>
<td>14</td>
<td>1.1</td>
<td>Overview</td>
<td>238</td>
</tr>
<tr>
<td>14</td>
<td>1.2</td>
<td>ATD Model</td>
<td>239</td>
</tr>
<tr>
<td>14</td>
<td>1.3</td>
<td>LLAB Model</td>
<td>245</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>The CIE Color Appearance Model (1997), CIECAM97s</td>
<td>252</td>
</tr>
<tr>
<td>15</td>
<td>1.1</td>
<td>Historical Development, Objectives, and Approach</td>
<td>252</td>
</tr>
<tr>
<td>15</td>
<td>1.2</td>
<td>Input Data</td>
<td>255</td>
</tr>
<tr>
<td>15</td>
<td>1.3</td>
<td>Adaptation Model</td>
<td>255</td>
</tr>
<tr>
<td>15</td>
<td>1.4</td>
<td>Appearance Correlates</td>
<td>257</td>
</tr>
<tr>
<td>15</td>
<td>1.5</td>
<td>Inverse Model</td>
<td>259</td>
</tr>
<tr>
<td>15</td>
<td>1.6</td>
<td>Phenomena Predicted</td>
<td>259</td>
</tr>
<tr>
<td>15</td>
<td>1.7</td>
<td>The ZLAB Color Appearance Model</td>
<td>260</td>
</tr>
<tr>
<td>15</td>
<td>1.8</td>
<td>Why Not Use Just CIECAM97s?</td>
<td>264</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>CIECAM02</td>
<td>265</td>
</tr>
<tr>
<td>16</td>
<td>1.1</td>
<td>Objectives and Approach</td>
<td>265</td>
</tr>
<tr>
<td>16</td>
<td>1.2</td>
<td>Input Data</td>
<td>266</td>
</tr>
<tr>
<td>16</td>
<td>1.3</td>
<td>Adaptation Model</td>
<td>267</td>
</tr>
<tr>
<td>16</td>
<td>1.4</td>
<td>Opponent Color Dimensions</td>
<td>271</td>
</tr>
<tr>
<td>16</td>
<td>1.5</td>
<td>Hue</td>
<td>271</td>
</tr>
<tr>
<td>16</td>
<td>1.6</td>
<td>Lightness</td>
<td>272</td>
</tr>
<tr>
<td>16</td>
<td>1.7</td>
<td>Brightness</td>
<td>272</td>
</tr>
<tr>
<td>16</td>
<td>1.8</td>
<td>Chroma</td>
<td>273</td>
</tr>
<tr>
<td>16</td>
<td>1.9</td>
<td>Colorfulness</td>
<td>273</td>
</tr>
<tr>
<td>16</td>
<td>1.10</td>
<td>Saturation</td>
<td>273</td>
</tr>
<tr>
<td>16</td>
<td>1.11</td>
<td>Cartesian Coordinates</td>
<td>273</td>
</tr>
<tr>
<td>16</td>
<td>1.12</td>
<td>Inverse Model</td>
<td>274</td>
</tr>
<tr>
<td>16</td>
<td>1.13</td>
<td>Implementation Guidelines</td>
<td>274</td>
</tr>
</tbody>
</table>