CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td></td>
<td>xiii</td>
</tr>
<tr>
<td>Chapter 1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Overview of UWB</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Advantages of UWB</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>UWB Applications</td>
<td>4</td>
</tr>
<tr>
<td>1.4</td>
<td>UWB Transmission Schemes</td>
<td>5</td>
</tr>
<tr>
<td>1.5</td>
<td>Challenges for UWB</td>
<td>7</td>
</tr>
<tr>
<td>Chapter 2</td>
<td>Channel Characteristics</td>
<td>9</td>
</tr>
<tr>
<td>2.1</td>
<td>Large-Scale Models</td>
<td>10</td>
</tr>
<tr>
<td>2.1.1</td>
<td>Path Loss Models</td>
<td>10</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Shadowing</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>Small-Scale Models</td>
<td>12</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Tap-Delay-Line Fading Model</td>
<td>13</td>
</tr>
<tr>
<td>2.2.2</td>
<td>$\Delta - K$ Model</td>
<td>14</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Saleh–Valenzuela Model</td>
<td>15</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Standard UWB Channel Model</td>
<td>16</td>
</tr>
<tr>
<td>Chapter 3</td>
<td>UWB: Single-Band Approaches</td>
<td>19</td>
</tr>
<tr>
<td>3.1</td>
<td>Overview of Single-Band Approaches</td>
<td>20</td>
</tr>
<tr>
<td>3.2</td>
<td>Modulation Techniques</td>
<td>21</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Pulse Amplitude Modulation</td>
<td>21</td>
</tr>
<tr>
<td>3.2.2</td>
<td>On–Off Keying</td>
<td>22</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Phase Shift Keying</td>
<td>22</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Pulse Position Modulation</td>
<td>23</td>
</tr>
<tr>
<td>3.3</td>
<td>Multiple Access Techniques</td>
<td>23</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Time-Hopping UWB</td>
<td>24</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Direct-Sequence UWB</td>
<td>25</td>
</tr>
</tbody>
</table>
3.4 Demodulation Techniques, 26
3.4.1 Received Signal Model, 26
3.4.2 Correlation Receiver, 27
3.4.3 RAKE Receiver, 28
3.5 MIMO Single-Band UWB, 30
3.5.1 MIMO Space–Time-Coded Systems, 30
3.5.2 Space–Time-Coded UWB Systems, 32
3.6 Performance Analysis, 37
3.6.1 TH-BPPM, 38
3.6.2 TH-BPSK, 41
3.6.3 DS-BPSK, 42
3.7 Simulation Results, 44
3.8 Chapter Summary, 51

Chapter 4 UWB: Multiband OFDM Approach 53
4.1 Overview of Multiband OFDM Approach, 54
4.1.1 Fundamental Concepts, 54
4.1.2 Signal Model, 56
4.2 IEEE 802.15.3a WPAN Standard Proposal, 57
4.2.1 OFDM Parameters, 57
4.2.2 Rate-Dependent Parameters, 58
4.2.3 Operating Band Frequencies, 59
4.2.4 Channelization, 60
4.3 Physical Layer Design, 61
4.3.1 Scrambler and De-scrambler, 62
4.3.2 Convolutional Encoder and Viterbi Decoder, 62
4.3.3 Bit Interleaver and De-interleaver, 63
4.3.4 Constellation Mapper, 67
4.3.5 OFDM Modulation, 67
4.4 MAC Layer Design, 69
4.4.1 Network Topology, 69
4.4.2 Frame Architecture, 71
4.4.3 Network Operations, 72
4.5 Chapter Summary, 73

Chapter 5 MIMO Multiband OFDM 75
5.1 MIMO-OFDM Communications, 76
5.2 MIMO Multiband OFDM System Model, 78
5.2.1 Transmitter Description, 78
5.2.2 Channel Model, 80
5.2.3 Receiver Processing, 80
5.3 Performance Analysis, 82
 5.3.1 Independent Fading, 83
 5.3.2 Correlated Fading, 86
5.4 Simulation Results, 89
5.5 Chapter Summary, 94

Chapter 6 Performance Characterization
 6.1 System Model, 98
 6.2 Performance Analysis, 99
 6.2.1 Average PEP Analysis, 100
 6.2.2 Approximate PEP Formulation, 102
 6.2.3 Outage Probability, 106
 6.3 Analysis for MIMO Multiband OFDM Systems, 110
 6.3.1 MIMO Multiband OFDM System Model, 110
 6.3.2 Pairwise Error Probability, 111
 6.3.3 Example: Repetition STF Coding Based on Alamouti's Structure, 113
 6.4 Simulation Results, 114
 6.5 Chapter Summary, 120

Chapter 7 Performance Under Practical Considerations
 7.1 System Model, 122
 7.2 Average Signal-to-Noise Ratio, 124
 7.2.1 Expressions of Fading Term, ICI, and ISI, 124
 7.2.2 Variances of Fading Term, ICI, and ISI, 127
 7.2.3 Average Signal-to-Noise Ratio and Performance Degradation, 132
 7.3 Average Bit Error Rate, 132
 7.3.1 Overall Spreading Gain of 1, 134
 7.3.2 Overall Spreading Gain of 2, 136
 7.3.3 Overall Spreading Gain of 4, 137
 7.4 Performance Bound, 140
 7.5 Numerical and Simulation Results, 143
 7.5.1 Numerical Results, 143
Chapter 8 Differential Multiband OFDM 155
8.1 Differential Modulation, 156
 8.1.1 Single-Antenna Systems, 156
 8.1.2 MIMO Systems, 157
8.2 Differential Scheme for Multiband OFDM Systems, 159
 8.2.1 System Model, 159
 8.2.2 Differential Encoding and Transmitting Signal Structure, 160
 8.2.3 Multiband Differential Decoding, 162
8.3 Pairwise Error Probability, 163
8.4 Simulation Results, 166
8.5 Chapter Summary, 169

Chapter 9 Power-Controlled Channel Allocation 171
9.1 System Model, 172
9.2 Power-Controlled Channel Allocation Scheme, 174
 9.2.1 Generalized SNR for Various Transmission Modes, 175
 9.2.2 PER and Rate Constraint, 176
 9.2.3 Problem Formulation, 177
 9.2.4 Subband Assignment and Power Allocation Algorithm, 178
 9.2.5 Joint Rate Assignment and Resource Allocation Algorithm, 179
9.3 Simulation Results, 182
 9.3.1 Subband Assignment and Power Allocation, 182
 9.3.2 Joint Rate Assignment and Resource Allocation, 185
9.4 Chapter Summary, 186

Chapter 10 Cooperative UWB Multiband OFDM 189
10.1 Cooperative Communications, 190
10.2 System Model, 191
 10.2.1 Noncooperative UWB, 192
 10.2.2 Cooperative UWB, 193
10.3 SER Analysis for Cooperative UWB, 194
 10.3.1 Cooperative UWB, 194
 10.3.2 Comparison of Cooperative and Noncooperative UWB, 199
10.4 Optimum Power Allocation for Cooperative UWB, 201
 10.4.1 Power Minimization Using Cooperative Communications, 201
 10.4.2 Coverage Enhancement Using Cooperative Communications, 205
10.5 Improved Cooperative UWB, 208
10.6 Simulation Results, 212
10.7 Chapter Summary, 215

References 217

Index 227