Linear and Nonlinear Multivariable Feedback Control: A Classical Approach

Oleg N. Gasparyan
State Engineering University of Armenia

John Wiley & Sons, Ltd
Contents

Preface xi

Part I Linear Multivariable Control Systems

1 Canonical representations and stability analysis of linear MIMO systems 3
 1.1 Introduction 3
 1.2 General linear square MIMO systems 3
 1.2.1 Transfer matrices of general MIMO systems 3
 1.2.2 MIMO system zeros and poles 5
 1.2.3 Spectral representation of transfer matrices: characteristic transfer functions and canonical basis 10
 1.2.4 Stability analysis of general MIMO systems 19
 1.2.5 Singular value decomposition of transfer matrices 31
 1.3 Uniform MIMO systems 40
 1.3.1 Characteristic transfer functions and canonical representations of uniform MIMO systems 41
 1.3.2 Stability analysis of uniform MIMO systems 43
 1.4 Normal MIMO systems 51
 1.4.1 Canonical representations of normal MIMO systems 51
 1.4.2 Circulant MIMO systems 53
 1.4.3 Anticirculant MIMO systems 62
 1.4.4 Characteristic transfer functions of complex circulant and anticirculant systems 70
 1.5 Multivariable root loci 74
 1.5.1 Root loci of general MIMO systems 76
 1.5.2 Root loci of uniform systems 89
 1.5.3 Root loci of circulant and anticirculant systems 93

2 Performance and design of linear MIMO systems 100
 2.1 Introduction 100
 2.2 Generalized frequency response characteristics and accuracy of linear MIMO systems under sinusoidal inputs 101
 2.2.1 Frequency characteristics of general MIMO systems 101
 2.2.2 Frequency characteristics and oscillation index of normal MIMO systems 117
 2.2.3 Frequency characteristics and oscillation index of uniform MIMO systems 121
2.3 Dynamical accuracy of MIMO systems under slowly changing
deterministic signals 124
2.3.1 Matrices of error coefficients of general MIMO systems 124
2.3.2 Dynamical accuracy of circulant, anticirculant and uniform
MIMO systems 129
2.3.3 Accuracy of MIMO systems with rigid cross-connections 132
2.4 Statistical accuracy of linear MIMO systems 135
2.4.1 Accuracy of general MIMO systems under stationary
stochastic signals 135
2.4.2 Statistical accuracy of normal MIMO systems 139
2.4.3 Statistical accuracy of uniform MIMO systems 141
2.4.4 Formulae for mean square outputs of characteristic systems 145
2.5 Design of linear MIMO systems 151

Part II Nonlinear Multivariable Control Systems 171

3 Study of one-frequency self-oscillation in nonlinear harmonically
linearized MIMO systems 173
3.1 Introduction 173
3.2 Mathematical foundations of the harmonic linearization method for
one-frequency periodical processes in nonlinear MIMO systems 181
3.3 One-frequency limit cycles in general MIMO systems 184
3.3.1 Necessary conditions for the existence and investigation of the
limit cycle in harmonically linearized MIMO systems 184
3.3.2 Stability of the limit cycle in MIMO systems 194
3.4 Limit cycles in uniform MIMO systems 199
3.4.1 Necessary conditions for the existence and investigation of limit
cycles in uniform MIMO systems 199
3.4.2 Analysis of the stability of limit cycles in uniform systems 205
3.5 Limit cycles in circulant and anticirculant MIMO systems 214
3.5.1 Necessary conditions for the existence and investigation of limit
cycles in circulant and anticirculant systems 214
3.5.2 Limit cycles in uniform circulant and anticirculant systems 229

4 Forced oscillation and generalized frequency response characteristics
of nonlinear MIMO systems 236
4.1 Introduction 236
4.2 Nonlinear general MIMO systems 244
4.2.1 One-frequency forced oscillation and capturing in general MIMO systems 244
4.2.2 Generalized frequency response characteristics and oscillation
index of stable nonlinear MIMO systems 251
4.2.3 Generalized frequency response characteristics of limit cycling
MIMO systems 260
4.3 Nonlinear uniform MIMO systems 265
4.3.1 One-frequency forced oscillation and capturing in uniform systems 265
4.3.2 Generalized frequency response characteristics of stable
nonlinear uniform systems 268
4.3.3 Generalized frequency response characteristics of limit cycling uniform systems 271
4.4 Forced oscillations and frequency response characteristics along the canonical basis axes of nonlinear circulant and anticirculant systems 274
4.5 Design of nonlinear MIMO systems 278

5 Absolute stability of nonlinear MIMO systems 284
 5.1 Introduction 284
 5.2 Absolute stability of general and uniform MIMO systems 287
 5.2.1 Multidimensional Popov’s criterion 287
 5.2.2 Application of the Bode diagrams and Nichols plots 293
 5.2.3 Degree of stability of nonlinear MIMO systems 296
 5.3 Absolute stability of normal MIMO systems 299
 5.3.1 Generalized Aizerman’s hypothesis 301
 5.4 Off-axis circle and parabolic criteria of the absolute stability of MIMO systems 304
 5.4.1 Off-axis circle criterion 305
 5.4.2 Logarithmic form of the off-axis criterion of absolute stability 309
 5.4.3 Parabolic criterion of absolute stability 313
 5.5 Multidimensional circle criteria of absolute stability 314
 5.5.1 General and normal MIMO systems 316
 5.5.2 Inverse form of the circle criterion for uniform systems 319
 5.6 Multidimensional circle criteria of the absolute stability of forced motions 321

Bibliography 327
Index 335