Techniques and Applications of Hyperspectral Image Analysis

Hans F. Grahn and Paul Geladi
Contents

Preface xiii
List of Contributors xvii
List of Abbreviations xix

1 Multivariate Images, Hyperspectral Imaging: Background and Equipment
Paul L. M. Geladi, Hans F. Grahn and James E. Burger

1.1 Introduction 1
1.2 Digital Images, Multivariate Images and Hyperspectral Images 1
1.3 Hyperspectral Image Generation 5
1.3.1 Introduction 5
1.3.2 Point Scanning Imaging 6
1.3.3 Line Scanning Imaging 7
1.3.4 Focal Plane Scanning Imaging 8
1.4 Essentials of Image Analysis Connecting Scene and Variable Spaces 9
References 14

2 Principles of Multivariate Image Analysis (MIA) in Remote Sensing, Technology and Industry
Kim H. Esbensen and Thorbjørn T. Lied

2.1 Introduction 17
2.1.1 MIA Approach: Synopsis 18
2.2 Dataset Presentation 18
2.2.1 Master Dataset: Rationale 18
2.2.2 Montmorency Forest, Quebec, Canada: Forestry Background 19
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3</td>
<td>Tools in MIA</td>
<td></td>
</tr>
<tr>
<td>2.3.1</td>
<td>MIA Score Space Starting Point</td>
<td>21</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Colour-slice Contouring in Score Cross-plots: a 3-D Histogram</td>
<td>24</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Brushing: Relating Different Score Cross-plots</td>
<td>24</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Joint Normal Distribution (or Not)</td>
<td>26</td>
</tr>
<tr>
<td>2.3.5</td>
<td>Local Models/Local Modelling: a Link to Classification</td>
<td>27</td>
</tr>
<tr>
<td>2.4</td>
<td>MIA Analysis Concept: Master Dataset Illustrations</td>
<td></td>
</tr>
<tr>
<td>2.4.1</td>
<td>A New Topographic Map Analogy</td>
<td>28</td>
</tr>
<tr>
<td>2.4.2</td>
<td>MIA Topographic Score Space Delineation of Single Classes</td>
<td>31</td>
</tr>
<tr>
<td>2.4.3</td>
<td>MIA Delineation of End-member Mixing Classes</td>
<td>33</td>
</tr>
<tr>
<td>2.4.4</td>
<td>Which to Use? When? How?</td>
<td>38</td>
</tr>
<tr>
<td>2.4.5</td>
<td>Scene-space Sampling in Score Space</td>
<td>39</td>
</tr>
<tr>
<td>2.5</td>
<td>Conclusions</td>
<td>40</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>41</td>
</tr>
</tbody>
</table>

3 Clustering and Classification in Multispectral Imaging for Quality Inspection of Postharvest Products

Jacco C. Noordam and Willie H. A. M. van den Broek

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Introduction to Multispectral Imaging in Agriculture</td>
<td>43</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Measuring Quality</td>
<td>43</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Spectral Imaging in Agriculture</td>
<td>44</td>
</tr>
<tr>
<td>3.2</td>
<td>Unsupervised Classification of Multispectral Images</td>
<td>46</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Unsupervised Classification with FCM</td>
<td>46</td>
</tr>
<tr>
<td>3.2.2</td>
<td>FCM Clustering</td>
<td>47</td>
</tr>
<tr>
<td>3.2.3</td>
<td>cFMC Clustering</td>
<td>48</td>
</tr>
<tr>
<td>3.2.4</td>
<td>csiFMC</td>
<td>49</td>
</tr>
<tr>
<td>3.2.5</td>
<td>Combining Spectral and Spatial Information</td>
<td>51</td>
</tr>
<tr>
<td>3.2.6</td>
<td>sgFCM Clustering</td>
<td>52</td>
</tr>
<tr>
<td>3.3</td>
<td>Supervised Classification of Multispectral Images</td>
<td>54</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Multivariate Image Analysis for Training Set Selection</td>
<td>55</td>
</tr>
<tr>
<td>3.3.2</td>
<td>FEMOS</td>
<td>57</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Experiment with a Multispectral Image of Pine and Spruce Wood</td>
<td>58</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Clustering with FEMOS Procedure</td>
<td>60</td>
</tr>
</tbody>
</table>
3.4 Visualization and Coloring of Segmented Images and Graphs: Class Coloring 62
3.5 Conclusions 64
References 65

4 Self-modeling Image Analysis with SIMPLISMA 69
Willem Windig, Sharon Markel and Patrick M. Thompson

4.1 Introduction 69
4.2 Materials and Methods 70
4.2.1 FTIR Microscopy 70
4.2.2 SIMS Imaging of a Mixture of Palmitic and Stearic Acids on Aluminum foil 71
4.2.3 Data Analysis 73
4.3 Theory 73
4.4 Results and Discussion 75
4.4.1 FTIR Microscopy Transmission Data of a Polymer Laminate 75
4.4.2 FTIR Reflectance Data of a Mixture of Aspirin and Sugar 80
4.4.3 SIMS Imaging of a Mixture of Palmitic and Stearic Acids on Aluminum Foil 80
4.5 Conclusions 85
References 87

5 Multivariate Analysis of Spectral Images Composed of Count Data 89
Michael R. Keenan

5.1 Introduction 89
5.2 Example Datasets and Simulations 92
5.3 Component Analysis 95
5.4 Orthogonal Matrix Factorization 96
5.4.1 PCA and Related Methods 97
5.4.2 PCA of Arbitrary Factor Models 102
5.4.3 Maximum Likelihood PCA (MLPCA) 104
5.4.4 Weighted PCA (WPCA) 105
5.4.5 Principal Factor Analysis (PFA) 107
5.4.6 Selecting the Number of Components 108
5.5 Maximum Likelihood Based Approaches 113
5.5.1 Poisson Non-negative Matrix Factorization (PNNMF) 114
Contents

5.5.2 Iteratively Weighted Least Squares (IWLS) 117
5.5.3 NNMF: Gaussian Case (Approximate Noise) 118
5.5.4 Factored NNMF: Gaussian Case (Approximate Data) 119
5.5.5 Alternating Least Squares (ALS) 120
5.5.6 Performance Comparisons 121
5.6 Conclusions 124
Acknowledgements 125
References 125

6 Hyperspectral Image Data Conditioning and Regression Analysis 127
James E. Burger and Paul L. M. Geladi

6.1 Introduction 127
6.2 Terminology 128
6.3 Multivariate Image Regression 128
6.3.1 Regression Diagnostics 130
6.3.2 Differences between Normal Calibration and Image Calibration 132
6.4 Data Conditioning 132
6.4.1 Reflectance Transformation and Standardization 133
6.4.2 Spectral Transformations 135
6.4.3 Data Clean-up 137
6.4.4 Data Conditioning Summary 138
6.5 PLS Regression Optimization 138
6.5.1 Data Subset Selection 138
6.5.2 Pseudorank Determination 139
6.6 Regression Examples 140
6.6.1 Artificial Ternary Mixture 142
6.6.2 Commercial Cheese Samples 146
6.6.3 Wheat Straw Wax 149
6.7 Conclusions 150
Acknowledgements 152
References 152

7 Principles of Image Cross-validation (ICV): Representative Segmentation of Image Data Structures 155
Kim H. Esbensen and Thorbjörn T. Lied

7.1 Introduction 155
7.2 Validation Issues 156
10 Multivariate Movies and their Applications in Pharmaceutical and Polymer Dissolution Studies 221
Jaap van der Weerd and Sergei G. Kazarian

10.1 Introduction 221
10.1.1 Introducing the Time Axis 222
10.1.2 Data Structure and Reduction 223
10.1.3 Compression of Spectra 224
10.1.4 Space Dimensions 227
10.1.5 Time Dimension 231
10.1.6 Simultaneous Compression of all Variables 235

10.2 Applications: Solvent Diffusion and Pharmaceutical Studies 237
10.2.1 Solvent Diffusion in Polymers 238
10.2.2 Optical and NMR Studies 242
10.2.3 Line Imaging 245
10.2.4 Global MIR Imaging Studies of Solvent Intake 246

10.3 Drug Release 249
10.3.1 ATR-FTIR Imaging 251

10.4 Conclusions 254
Acknowledgement 255
References 255

11 Multivariate Image Analysis of Magnetic Resonance Images: Component Resolution with the Direct Exponential Curve Resolution Algorithm (DECRA) 261
Brian Antalek, Willem Windig and Joseph P. Hornak

11.1 Introduction 261
11.2 DECRA Approach 264
11.3 DECRA Algorithm 269
11.4 1H Relaxation 270
11.5 T1 Transformation 271
11.6 Imaging Methods 271
11.7 Phantom Images 273
11.7.1 T2 Series 273
11.7.2 T1 Series 277
11.8 Brain Images 278
11.8.1 T2 Series 278
11.8.2 T1 Series 281
11.9 Regression Analysis 282
11.10 Conclusions 285
References 285
12 Hyperspectral Imaging Techniques: an Attractive Solution for the Analysis of Biological and Agricultural Materials 289
Vincent Baeten, Juan Antonio Fernández Pierna and Pierre Dardenne

12.1 Introduction 289
12.2 Sample Characterization and Chemical Species Distribution 291
 12.2.1 Analysis of Fruit 291
 12.2.2 Analysis of Kernels 294
 12.2.3 Analysis of Food and Feed Mixtures 296
12.3 Detecting Contamination and Defects in Agro-food Products 297
 12.3.1 Detecting Contamination in Meat Products 297
 12.3.2 Detecting Contamination and Defects in Fruit 298
 12.3.3 Detecting Contamination and Defects in Cereals 301
 12.3.4 Detecting Contamination in Compound Feed 302
12.4 Other Agronomic and Biological Applications 304
12.5 Conclusion 306
References 307

13 Application of Multivariate Image Analysis in Nuclear Medicine: Principal Component Analysis (PCA) on Dynamic Human Brain Studies with Positron Emission Tomography (PET) for Discrimination of Areas of Disease at High Noise Levels 313
Pasha Razifar and Mats Bergström

13.1 Introduction 313
13.2 PET 315
 13.2.1 History 315
 13.2.2 Principles 315
 13.2.3 Scanning Modes in PET 317
 13.2.4 Analysis of PET Data/Images 318
13.3 PCA 319
 13.3.1 History 319
 13.3.2 Definition 319
 13.3.3 Pre-processing and Scaling 320
 13.3.4 Noise Pre-normalization 321
<table>
<thead>
<tr>
<th>13.4</th>
<th>Application of PCA in PET</th>
<th>322</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.4.1</td>
<td>SWPCA</td>
<td>323</td>
</tr>
<tr>
<td>13.4.2</td>
<td>VWPCA</td>
<td>326</td>
</tr>
<tr>
<td>13.4.3</td>
<td>MVWPCA</td>
<td>327</td>
</tr>
</tbody>
</table>

13.5 Conclusions 330

References 332

<table>
<thead>
<tr>
<th>14</th>
<th>Near Infrared Chemical Imaging: Beyond the Pictures</th>
<th>335</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. Neil Lewis, Janie Dubois, Linda H. Kidder and Kenneth S. Haber</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

14.1	Introduction	335
14.2	Data Measurement	338
14.3	Selection of Samples and Acquisition Schemes	340
14.4	What, How Much and Where	343
14.5	Data Analysis and the Underlying Structure of the Data	344
14.6	Imaging with Statistically Meaningful Spatial Dimensions	348
14.7	Chemical Contrast	350
14.8	Measure, Count and Compare	355
14.9	Correlating Data to Sample Performance and/or Behavior: the Value of NIRCI Data	359

| 14.10 | Conclusions | 360 |

References 361

Index 363