Advanced Model Order Reduction Techniques in VLSI Design

SHELDON X.-D. TAN
University of California, Riverside

LEI HE
University of California, Los Angeles
## Contents

*Figures*  
viii

*Tables*  
xiv

*Foreword*  
xv

*Acknowledgments*  
xxvii

1 **Introduction**  
   1.1 The need for compact modeling of interconnects  
   1.2 Interconnect analysis and modeling methods in a nutshell  
   1.3 Book outline  
   1.4 Summary  

2 **Projection-based model order reduction algorithms**  
   2.1 Moments and moment-matching methods  
   2.2 Moment computation in MNA formulation  
   2.3 Asymptotic waveform evaluation  
   2.4 Projection-based model order reduction methods  
   2.5 Numerical examples  
   2.6 Historical notes  
   2.7 Summary  
   2.8 Appendices  

3 **Truncated balanced realization methods for MOR**  
   3.1 Introduction  
   3.2 The singular value decomposition (SVD)  
   3.3 Proper orthogonal decomposition (POD)  
   3.4 Classic truncated balanced realization methods  
   3.5 Passive-preserving truncated balanced realization methods  
   3.6 Hybrid TBR and combined TBR-Krylov subspace methods  
   3.7 Empirical TBR and poor man’s TBR  
   3.8 Computational complexities of TBR methods  
   3.9 Practical implementation and numerical issues  
   3.10 Numerical examples  
   3.11 Summary
## Contents

4 Passive balanced truncation of linear systems in descriptor form 56
  4.1 Introduction 56
  4.2 The passive balanced truncation algorithm: PriTBR 57
  4.3 Structure-preserved balanced truncation 60
  4.4 Numerical examples 62
  4.5 Summary 64

5 Passive hierarchical model order reduction 67
  5.1 Overview of hierarchical MOR algorithm 68
  5.2 DDD-based hierarchical decomposition 70
  5.3 Hierarchical reduction versus moment-matching 76
  5.4 Preservation of reciprocity 80
  5.5 Multi-point expansion hierarchical reduction 81
  5.6 Numerical examples 84
  5.7 Summary 91
  5.8 Historical notes on node-elimination-based reduction methods 91

6 Terminal reduction of linear dynamic circuits 93
  6.1 Review of the SVDMOR method 95
  6.2 Input and output moment matrices 96
  6.3 The extended-SVDMOR (ESVDMOR) method 99
  6.4 Determination of cluster number by SVD 102
  6.5 K-means clustering algorithm 104
  6.6 TermMerg algorithm 106
  6.7 Numerical examples 111
  6.8 Summary 116

7 Vector-potential equivalent circuit for inductance modeling 118
  7.1 Vector-potential equivalent circuit 119
  7.2 VPEC via PEEC inversion 124
  7.3 Numerical examples 128
  7.4 Inductance models in hierarchical reduction 131
  7.5 Summary 136

8 Structure-preserving model order reduction 137
  8.1 Introduction 137
  8.2 Chapter overview 138
  8.3 Background 139
  8.4 Block-structure-preserving model reduction 141
  8.5 TBS method 144
  8.6 Two-level analysis 149
  8.7 Numerical examples 151
  8.8 Summary 157

9 Block structure-preserving reduction for RLCK circuits 158