INSTANTANEOUS POWER THEORY AND APPLICATIONS TO POWER CONDITIONING

Hirofumi Akagi
Professor of Electrical Engineering
TIT—Tokyo Institute of Technology, Japan

Edson Hirokazu Watanabe
Professor of Electrical Engineering
UFRJ—Federal University of Rio de Janeiro, Brazil

Mauricio Aredes
Associate Professor of Electrical Engineering
UFRJ—Federal University of Rio de Janeiro, Brazil
CONTENTS

Preface

1. **Introduction**
 1.1. Concepts and Evolution of Electric Power Theory
 1.2. Applications of the $p-q$ Theory to Power Electronics Equipment
 1.3. Harmonic Voltages in Power Systems
 1.4. Identified and Unidentified Harmonic-Producing Loads
 1.5. Harmonic Current and Voltage Sources
 1.6. Basic Principles of Harmonic Compensation
 1.7. Basic Principles of Power Flow Control
 References

2. **Electric Power Definitions: Background**
 2.1. Power Definitions Under Sinusoidal Conditions
 2.2. Voltage and Current Phasors and the Complex Impedance
 2.3. Complex Power and Power Factor
 2.4. Concepts of Power Under Non-Sinusoidal Conditions—
 Conventional Approaches
 2.4.1. Power Definitions by Budeanu
 2.4.1.A. Power Tetrahedron and Distortion Factor
 2.4.2. Power Definitions by Fryze
 2.5. Electric Power in Three-Phase Systems
 2.5.1. Classifications of Three-Phase Systems
 2.5.2. Power in Balanced Three-Phase Systems
 2.5.3. Power in Three-Phase Unbalanced Systems
 References
2.6. Summary
References

3 The Instantaneous Power Theory

3.1. Basis of the p-q Theory

3.1.1. Historical Background of the p-q Theory

3.1.2. The Clarke Transformation

3.1.2.A. Calculation of Voltage and Current Vectors when Zero-Sequence Components are Excluded

3.1.3. Three-Phase Instantaneous Active Power in Terms of Clarke Components

3.1.4. The Instantaneous Powers of the p-q Theory

3.2. The p-q Theory in Three-Phase, Three-Wire Systems

3.2.1. Comparisons with the Conventional Theory

3.2.1.A. Example #1—Sinusoidal Voltages and Currents

3.2.1.B. Example #2—Balanced Voltages and Capacitive Loads

3.2.1.C. Example #3—Sinusoidal Balanced Voltage and Nonlinear Load

3.2.2. Use of the p-q Theory for Shunt Current Compensation

3.2.2.A. Examples of Appearance of Hidden Currents

3.2.2.A.1 Presence of the Fifth Harmonic in Load Current

3.2.2.A.2 Presence of the Seventh Harmonic in Load Current

3.2.3. The Dual p-q Theory

3.3. The p-q Theory in Three-Phase, Four-Wire Systems

3.3.1. The Zero-Sequence Power in a Three-Phase Sinusoidal Voltage Source

3.3.2. Presence of Negative-Sequence Components

3.3.3. General Case-Including Distortions and Imbalances in the Voltages and in the Currents

3.3.4. Physical Meanings of the Instantaneous Real, Imaginary, and Zero-Sequence Powers

3.3.5. Avoiding the Clarke Transformation in the p-q Theory

3.3.6. Modified p-q Theory

3.4. Instantaneous abc Theory

3.4.1. Active and Nonactive Current Calculation by Means of a Minimization Method

3.4.2. Generalized Fryze Currents Minimization Method

3.5. Comparisons between the p-q Theory and the abc Theory

3.5.1. Selection of Power Components to be Compensated

3.6. Summary
References
4 Shunt Active Filters

4.1. General Description of Shunt Active Filters

4.1.1. PWM Converters for Shunt Active Filters

4.1.2. Active Filter Controllers

4.2. Three-Phase, Three-Wire Shunt Active Filters

4.2.1. Active Filters for Constant Power Compensation

4.2.2. Active Filters for Sinusoidal Current Control

4.2.2.A. Positive-Sequence Voltage Detector

4.2.2.A.1 Main Circuit of the Voltage Detector

4.2.2.A.2 Phase-Locked-Loop (PLL) Circuit

4.2.2.B. Simulation Results

4.2.3. Active Filters for Current Minimization

4.2.4. Active Filters for Harmonic Damping

4.2.4.A. Shunt Active Filter Based on Voltage Detection

4.2.4.B. Active Filter Controller Based on Voltage Detection

4.2.4.C. An Application Case of Active Filter for Harmonic Damping

4.2.4.C.1 The Power Distribution Line for the Test Case

4.2.4.C.2 The Active Filter for Damping of Harmonic Propagation

4.2.4.C.3 Experimental Results

4.2.4.C.4 Adjust of the Active Filter Gain

4.2.5. A Digital Controller

4.2.5.A. System Configuration of the Digital Controller

4.2.5.A.1 Operating Principle of PLL and PWM Units

4.2.5.A.2 Sampling Operation in the A/D Unit

4.2.5.B. Current Control Methods

4.2.5.B.1 Modeling of Digital Current Control

4.2.5.B.2 Proportional Control

4.2.5.B.3 Deadbeat Control

4.2.5.B.4 Frequency Response of Current Control

4.3. Three-Phase, Four-Wire Shunt Active Filters

4.3.1. Converter Topologies for Three-Phase, Four-Wire Systems

4.3.2. Dynamic Hysteresis-Band Current Controller

4.3.3. Active Filter DC Voltage Regulator

4.3.4. Optimal Power Flow Conditions

4.3.5. Constant Instantaneous Power Control Strategy

4.3.6. Sinusoidal Current Control Strategy

4.3.7. Performance Analysis and Parameter Optimization

4.3.7.A. Influence of the System Parameters

4.3.7.B. Dynamic Response of the Shunt Active Filter
5 Hybrid and Series Active Filters

5.1. Basic Series Active Filter

5.2. Combined Series Active Filter and Shunt Passive Filter
 5.2.1. Example of An Experimental System
 5.2.1.A. Compensation Principle
 5.2.1.A.1 Source Harmonic Current I_{sh}
 5.2.1.A.2 Output Voltage of Series Active Filter: \dot{V}_C
 5.2.1.A.3 Shunt Passive Filter Harmonic Voltage: \dot{V}_{Fh}
 5.2.1.B. Filtering Characteristics
 5.2.1.B.1 Harmonic Current Flowing From the Load to the Source
 5.2.1.B.2 Harmonic Current Flowing from the Source to the Shunt Passive Filter
 5.2.1.C. Control Circuit
 5.2.1.D. Filter to Suppress Switching Ripples
 5.2.1.E. Experimental Results
 5.2.2. Some Remarks about the Hybrid Filters

5.3. Series Active Filter Integrated with a Double-Series Diode Rectifier
 5.3.1. The First-Generation Control Circuit
 5.3.1.A. Circuit Configuration and Delay Time
 5.3.1.B. Stability of the Active Filter
 5.3.2. The Second-Generation Control Circuit
 5.3.3. Stability Analysis and Characteristics Comparison
 5.3.3.A. Transfer Function of the Control Circuits
 5.3.3.B. Characteristics Comparisons
 5.3.4. Design of a Switching-Ripple Filter
 5.3.4.A. Design Principle
 5.3.4.B. Effect on the System Stability
 5.3.4.C. Experimental Testing
 5.3.5. Experimental Results

5.4. Comparisons Between Hybrid and Pure Active Filters
 5.4.1. Low-Voltage Transformerless Hybrid Active Filter
 5.4.2. Low-Voltage Transformerless Pure Shunt Active Filter
 5.4.3. Comparisons Through Simulation Results

5.5. Conclusions

References
6 Combined Series and Shunt Power Conditioners

6.1. The Unified Power Flow Controller (UPFC)

- **6.1.1. FACTS and UPFC Principles**
 - 6.1.1.A. Voltage Regulation Principle
 - 6.1.1.B. Power Flow Control Principle
- **6.1.2. A Controller Design for the UPFC**
- **6.1.3. UPFC Approach Using a Shunt Multipulse Converter**
 - 6.1.3.A. Six-Pulse Converter
 - 6.1.3.B. Quasi 24-Pulse Converter
 - 6.1.3.C. Control of Active and Reactive Power in Multipulse Converters
- **6.1.3.D. Shunt Multipulse Converter Controller**

6.2. The Unified Power Quality Conditioner (UPQC)

- **6.2.1. General Description of the UPQC**
- **6.2.2. A Three-Phase, Four-Wire UPQC**
 - 6.2.2.A. Power Circuit of the UPQC
 - 6.2.2.B. The UPQC Controller
 - 6.2.2.B.1 PWM Voltage Control with Minor Feedback Control Loop
 - 6.2.2.B.2 Series Active Filter Controller
 - 6.2.2.B.3 Integration of the Series and Shunt Active Filter Controllers
 - 6.2.2.B.4 General Aspects
 - 6.2.2.C. Analysis of the UPQC Dynamic
 - 6.2.2.C.1 Optimizing the Power System Parameters
 - 6.2.2.C.2 Optimizing the Parameters in the Control Systems
 - 6.2.2.C.3 Simulation Results
 - 6.2.2.C.4 Experimental Results
- **6.2.3. The UPQC Combined with Passive Filters (Hybrid UPQC)**
 - 6.2.3.A. Controller of the Hybrid UPQC
 - 6.2.3.B. Experimental Results

6.3. The Universal Active Power Line Conditioner (UPLC)

- **6.3.1. General Description of the UPLC**
- **6.3.2. The Controller of the UPLC**
 - 6.3.2.A. Controller for the Configuration #2 of UPLC
- **6.3.3. Performance of the UPLC**
 - 6.3.3.A. Normalized System Parameters
 - 6.3.3.B. Simulation Results of Configuration #1 of UPLC
 - 6.3.3.C. Simulation Results of Configuration #2 of UPLC
- **6.3.4. General Aspects**

6.4. Summary

References

Index