Contents

Chapter 1 Introduction ... 1
 1.1 Main Features of Self-Excited Vibration .. 1
 1.1.1 Natural Vibration in Conservative Systems .. 1
 1.1.2 Forced Vibration under Periodic Excitations ... 3
 1.1.3 Parametric Vibration ... 6
 1.1.4 Self-Excited Vibration ... 9
 1.2 Conversion between Forced Vibration and Self-Excited Vibration 12
 1.3 Excitation Mechanisms of Self-Excited Vibration .. 13
 1.3.1 Energy Mechanism ... 13
 1.3.2 Feedback Mechanism ... 15
 1.4 A Classification of Self-Excited Vibration Systems .. 16
 1.4.1 Discrete System .. 17
 1.4.2 Continuous System ... 17
 1.4.3 Hybrid System .. 18
 1.5 Outline of the Book ... 18
References .. 20

Chapter 2 Geometrical Method .. 21
 2.1 Structure of Phase Plane .. 21
 2.2 Phase Diagrams of Conservative Systems ... 23
 2.2.1 Phase Diagram of a Simple Pendulum .. 23
 2.2.2 Phase Diagram of a Conservative System .. 24
 2.3 Phase Diagrams of Nonconservative Systems .. 25
 2.3.1 Phase Diagram of Damped Linear Vibrator ... 25
 2.3.2 Phase Diagram of Damped Nonlinear Vibrator .. 28
 2.4 Classification of Equilibrium Points of Dynamic Systems 32
 2.4.1 Linear Approximation at Equilibrium Point ... 32
 2.4.2 Classification of Equilibrium Points .. 33
 2.4.3 Transition between Types of Equilibrium Points .. 35
 2.5 The Existence of Limit Cycle of an Autonomous System 36
 2.5.1 The Index of a Closed Curve with Respect to Vector Field 36
 2.5.2 Theorems about the Index of Equilibrium Point ... 39
 2.5.3 The Index of Equilibrium Point and Limit Cycle ... 39
2.5.4 The Existence of a Limit Cycle .. 40
2.6 Soft Excitation and Hard Excitation of Self-Excited Vibration 42
 2.6.1 Definition of Stability of Limit Cycle 43
 2.6.2 Companion Relations ... 43
 2.6.3 Soft Excitation and Hard Excitation 45
2.7 Self-Excited Vibration in Strongly Nonlinear Systems 46
 2.7.1 Waveforms of Self-Excited Vibration 46
 2.7.2 Relaxation Vibration .. 47
 2.7.3 Self-Excited Vibration in a Non-Smooth Dynamic System 49
2.8 Mapping Method and its Application 52
 2.8.1 Poincare Map ... 52
 2.8.2 Piecewise Linear System .. 55
 2.8.3 Application of the Mapping Method 56
References .. 58

Chapter 3 Stability Methods ... 59
3.1 Stability of Equilibrium Position .. 59
 3.1.1 Equilibrium Position of Autonomous System 59
 3.1.2 First Approximation Equation of a Nonlinear Autonomous System .. 60
 3.1.3 Definition of Stability of Equilibrium Position 60
 3.1.4 First Approximation Theorem of Stability of Equilibrium Position .. 61
3.2 An Algebraic Criterion for Stability of Equilibrium Position 62
 3.2.1 Eigenvalues of Linear Ordinary Differential Equations 62
 3.2.2 Distribution of Eigenvalues of a Asymptotic Stable System 63
 3.2.3 Hurwitz criterion .. 63
3.3 A Geometric Criterion for Stability of Equilibrium Position 65
 3.3.1 Hodograph of Complex Vector $D(i\omega)$ 65
 3.3.2 Argument of Hodograph of Complex Vector $D(i\omega)$ 66
 3.3.3 Geometric Criterion for Stability of Equilibrium Position 67
 3.3.4 Coefficient Condition corresponding to the Second Type of Critical Stability .. 68
3.4 Parameter Condition for Stability of Equilibrium Position 70
 3.4.1 Stable Region in Coefficient Space 70
 3.4.2 Stable Region in Parameter Space 71
 3.4.3 Parameter Perturbation on the Boundaries of Stable Region 73
3.5 A Quadratic Form Criterion for Stability of Equilibrium Position 75
 3.5.1 Linear Equations of Motion of Holonomic System 75
 3.5.2 Quadratic Form of Eigenvectors of a Holonomic System 76
 3.5.3 Quadratic Form Criterion for a Holonomic System 78
Chapter 4 Quantitative Methods

4.1 Center Manifold
- 4.1.1 Concept of Flow
- 4.1.2 Hartman-Grobman Theorem
- 4.1.3 Center Manifold Theorem
- 4.1.4 Equation of Center Manifold

4.2 Hopf Bifurcation Method
- 4.2.1 Poincare-Birkhoff Normal Form
- 4.2.2 Poincare-Andronov-Hopf Bifurcation Theorem
- 4.2.3 Hopf Bifurcation Method

4.3 Lindstedt-Poincare Method
- 4.3.1 Formulation of Equations
- 4.3.2 Periodic Solution of the van der Pol Equation

4.4 An Averaging Method of Second-Order Autonomous System
- 4.4.1 Formulation of Equations
- 4.4.2 Periodic Solution of Rayleigh Equation

4.5 Method of Multiple Scales for a Second-Order Autonomous System
- 4.5.1 Formulation of Equation System
- 4.5.2 Formulation of Periodic Solution
- 4.5.3 Periodic Solution of van der Pol Equation

Chapter 5 Analysis Method for Closed-Loop System

5.1 Mathematical Model in Frequency Domain
- 5.1.1 Concepts Related to the Closed-Loop System
- 5.1.2 Typical Components
- 5.1.3 Laplace Transformation
- 5.1.4 Transfer Function
- 5.1.5 Block Diagram of Closed-Loop Systems

5.2 Nyquist Criterion
- 5.2.1 Frequency Response
- 5.2.2 Nyquist Criterion
- 5.2.3 Application of Nyquist Criterion

5.3 A Frequency Criterion for Absolute Stability of a Nonlinear Closed-Loop System
- 5.3.1 Absolute Stability
- 5.3.2 Block Diagram Model of Nonlinear Closed-Loop Systems
Chapter 7 - Dynamic Shimmy of Front Wheel

7.2 Point Contact Theory
- 7.2.1 Classification of Point Contact Theory .. 174
- 7.2.2 Nonholonomic Constraint ... 176
- 7.2.3 Potential Energy of a Rolling Tire .. 177

7.3 Dynamic Shimmy of Front Wheel
- 7.3.1 Isolated Front Wheel Model .. 179
- 7.3.2 Stability of Front Wheel under Steady Rolling 181
- 7.3.3 Stable Regions in Parameter Plane ... 182
- 7.3.4 Influence of System Parameters on Dynamic Shimmy of Front Wheel ... 183

7.4 Dynamic Shimmy of Front Wheel Coupled with Vehicle 184
- 7.4.1 A Simplified Model of a Front Wheel System 184
- 7.4.2 Mathematical Model of the Front Wheel System 185
- 7.4.3 Stability of Steady Rolling of the Front Wheel System 187
- 7.4.4 Prevention of Dynamic Shimmy in Design Stage 189

Reference

- 8.1 Mechanical Model of Rotor in Planar Whirl 191
- 8.1.1 Classification of rotor whirls .. 192
- 8.1.2 Mechanical Model of Whirling Rotor ... 193

8.2 Fluid-Film Force
- 8.2.1 Operating Mechanism of Hydrodynamic Bearings 195
- 8.2.2 Reynolds’ Equation .. 196
- 8.2.3 Pressure Distribution on Journal Surface 199
- 8.2.4 Linearized Fluid Film Force ... 202
- 8.2.5 Concentrated Parameter Model of Fluid Film Force 204
- 8.2.6 Linear Expressions of Seal Force ... 207

8.3 Oil Whirl and Oil Whip
- 8.3.1 Hopf Bifurcation leading to Oil Whirl of Rotor 208
- 8.3.2 Threshold Speed and Whirl Frequency .. 212
- 8.3.3 Influence of Shaft Elasticity on the Oil Whirl of Rotor 215
- 8.3.4 Influence of External Damping on Oil Whirl 218
- 8.3.5 Oil Whip ... 222

8.4 Internal Damping in Deformed Rotation Shaft 226
- 8.4.1 Physical Background of Internal Force of Rotation Shaft 226
- 8.4.2 Analytical Expression of Internal Force of Rotation Shaft 227
- 8.4.3 Three Components of Internal Force of Rotation Shaft 231

8.5 Rotor Whirl Excited by Internal Damping ... 232
- 8.5.1 A Simple Model of Internal Damping Force of Deformed Rotating Shaft ... 232
- 8.5.2 Synchronous Whirl of Rotor with Unbalance 233
- 8.5.3 Supersynchronous Whirl .. 236
Chapter 9 Self-Excited Vibrations from Interaction of Structures and Fluid

9.1 Vortex Resonance in Flexible Structures

9.1.1 Vortex Shedding

9.1.2 Predominate Frequency

9.1.3 Wake Oscillator Model

9.1.4 Amplitude Prediction

9.1.5 Reduction of Vortex Resonance

9.2 Flutter in Cantilevered Pipe Conveying Fluid

9.2.1 Linear Mathematical Model

9.2.2 Critical Parameter Condition

9.2.3 Hopf Bifurcation and Critical Flow Velocity

9.2.4 Excitation Mechanism and Prevention of Flutter

9.3 Classical Flutter in Two-Dimensional Airfoil

9.3.1 A Continuous Model of Long Wing

9.3.2 Critical Flow Velocity of Classical Flutter

9.3.3 Excitation Mechanism of Classical Flutter

9.3.4 Influence of Parameters of the Wing on Critical Speed of Classical Flutter

9.4 Stall Flutter in Flexible Structure

9.4.1 Aerodynamic Forces Exciting Stall Flutter

9.4.2 A Mathematical Model of Galloping in the Flexible Structure

9.4.3 Critical Speed and Hysteresis Phenomenon of Galloping

9.4.4 Some Features of Stall Flutter and its Prevention Schemes

9.5 Fluid-Elastic Instability in Array of Circular Cylinders

9.5.1 Fluid-Elastic Instability

9.5.2 Fluid Forces Depending on Motion of Circular Cylinders

9.5.3 Analysis of Flow-Induced Vibration

9.5.4 Approximate Expressions of Critical Flow Velocity

9.5.5 Prediction and Prevention of Fluid-Elastic Instability

References

Chapter 10 Self-Excited Oscillations in Feedback Control System

10.1 Heating Control System

10.1.1 Operating Principle of the Heating Control System
10.1.2 Mathematical Model of the Heating Control System 303
10.1.3 Time History of Temperature Variation 305
10.1.4 Stable Limit Cycle in Phase Plane 306
10.1.5 Amplitude and Frequency of Room Temperature Derivation .. 307
10.1.6 An Excitation Mechanism of Self-Excited Oscillation 308
10.2 Electrical Position Control System with Hysteresis 308
10.2.1 Principle Diagram ... 308
10.2.2 Equations of Position Control System with Hysteresis Nonlinearity .. 310
10.2.3 Phase Diagram and Point Mapping 311
10.2.4 Existence of Limit Cycle ... 313
10.2.5 Critical Parameter Condition 314
10.3 Electrical Position Control System with Hysteresis and Dead-Zone .. 315
10.3.1 Equation of Motion .. 315
10.3.2 Phase Diagram and Point Mapping 316
10.3.3 Existence and Stability of Limit Cycle 318
10.3.4 Critical Parameter Condition 321
10.4 Hydraulic Position Control System 322
10.4.1 Schematic Diagram of a Hydraulic Actuator 322
10.4.2 Equations of Motion of Hydraulic Position Control System .. 323
10.4.3 Linearized Mathematical Model 325
10.4.4 Equilibrium Stability of Hydraulic Position Control System .. 327
10.4.5 Amplitude and Frequency of Self-Excited Vibration 328
10.4.6 Influence of Dead-Zone on Motion of Hydraulic Position Control System .. 330
10.4.7 Influence of Hysteresis and Dead-Zone on Motion of Hydraulic Position Control System 334
10.5 A Nonlinear Control System under Velocity Feedback with Time Delay .. 338
References ... 344

Chapter 11 Modeling and Control ... 345
11.1 Excitation Mechanism of Self-Excited Oscillation 346
11.1.1 An Explanation about Energy Mechanism 346
11.1.2 An Explanation about Feedback Mechanism 347
11.1.3 Joining of Energy and Feedback Mechanisms 349
11.2 Determine the Extent of a Mechanical Model 350
11.2.1 Minimal Model and Principle Block Diagram 351
11.2.2 First Type of Extended Model .. 352
11.2.3 Second Type of Extended Model 355
11.3 Mathematical Description of Motive Force 358
 11.3.1 Integrate the Differential Equations of
 Motion of Continuum .. 358
 11.3.2 Use of the Nonholonomic Constraint Equations 359
 11.3.3 Establishing Equivalent Model of the Motive Force 360
 11.3.4 Construct the Equivalent Oscillator of Motive Force ... 361
 11.3.5 Identification of Grey Box Model 362
 11.3.6 Constructing an Empiric Formula of the Motive Force ... 363
11.4 Establish Equations of Motion of Mechanical Systems 365
 11.4.1 Application of Lagrange’s Equation of Motion 365
 11.4.2 Application of Hamilton’s Principle 368
 11.4.3 Hamilton’s Principle for Open Systems 372
11.5 Discretization of Mathematical Model of a Distributed
 Parameter System .. 374
 11.5.1 Lumped Parameter Method 374
 11.5.2 Assumed-Modes Method 376
 11.5.3 Finite Element Method 379
11.6 Active Control for Suppressing Self-Excited Vibration 380
 11.6.1 Active Control of Flexible Rotor 381
 11.6.2 Active Control of an Airfoil Section with Flutter 384
References .. 387

Subject Index.. 390