## Contents

**Preface**  
xiii

1 The standard discrete system and origins of the finite element method  
1.1 Introduction  
1.2 The structural element and the structural system  
1.3 Assembly and analysis of a structure  
1.4 The boundary conditions  
1.5 Electrical and fluid networks  
1.6 The general pattern  
1.7 The standard discrete system  
1.8 Transformation of coordinates  
1.9 Problems  
1

2 A direct physical approach to problems in elasticity: plane stress  
2.1 Introduction  
2.2 Direct formulation of finite element characteristics  
2.3 Generalization to the whole region – internal nodal force concept abandoned  
2.4 Displacement approach as a minimization of total potential energy  
2.5 Convergence criteria  
2.6 Discretization error and convergence rate  
2.7 Displacement functions with discontinuity between elements – non-conforming elements and the patch test  
2.8 Finite element solution process  
2.9 Numerical examples  
2.10 Concluding remarks  
2.11 Problems  
19

3 Generalization of the finite element concepts. Galerkin-weighted residual and variational approaches  
3.1 Introduction  
3.2 Integral or ‘weak’ statements equivalent to the differential equations  
3.3 Approximation to integral formulations: the weighted residual-Galerkin method  
54
3.4 Virtual work as the 'weak form' of equilibrium equations for analysis of solids or fluids 69
3.5 Partial discretization 71
3.6 Convergence 74
3.7 What are 'variational principles'? 76
3.8 'Natural' variational principles and their relation to governing differential equations 78
3.9 Establishment of natural variational principles for linear, self-adjoint, differential equations 81
3.10 Maximum, minimum, or a saddle point? 83
3.11 Constrained variational principles. Lagrange multipliers 84
3.12 Constrained variational principles. Penalty function and perturbed lagrangian methods 88
3.13 Least squares approximations 92
3.14 Concluding remarks – finite difference and boundary methods 95
3.15 Problems 97

4 'Standard' and 'hierarchical' element shape functions: some general families of $C_0$ continuity 103
4.1 Introduction 103
4.2 Standard and hierarchical concepts 104
4.3 Rectangular elements – some preliminary considerations 107
4.4 Completeness of polynomials 109
4.5 Rectangular elements – Lagrange family 110
4.6 Rectangular elements – 'serendipity' family 112
4.7 Triangular element family 116
4.8 Line elements 119
4.9 Rectangular prisms – Lagrange family 120
4.10 Rectangular prisms – 'serendipity' family 121
4.11 Tetrahedral elements 122
4.12 Other simple three-dimensional elements 125
4.13 Hierarchic polynomials in one dimension 125
4.14 Two- and three-dimensional, hierarchical elements of the 'rectangle' or 'brick' type 128
4.15 Triangle and tetrahedron family 128
4.16 Improvement of conditioning with hierarchical forms 130
4.17 Global and local finite element approximation 131
4.18 Elimination of internal parameters before assembly – substructures 132
4.19 Concluding remarks 134
4.20 Problems 134

5 Mapped elements and numerical integration – 'infinite' and 'singularity elements' 138
5.1 Introduction 138
5.2 Use of 'shape functions' in the establishment of coordinate transformations 139
5.3 Geometrical conformity of elements 143
5.4 Variation of the unknown function within distorted, curvilinear elements. Continuity requirements 143
5.5 Evaluation of element matrices. Transformation in $\xi, \eta, \zeta$ coordinates 145
5.6 Evaluation of element matrices. Transformation in area and volume coordinates 148
5.7 Order of convergence for mapped elements 151
5.8 Shape functions by degeneration 153
5.9 Numerical integration – one dimensional 160
5.10 Numerical integration – rectangular (2D) or brick regions (3D) 162
5.11 Numerical integration – triangular or tetrahedral regions 164
5.12 Required order of numerical integration 164
5.13 Generation of finite element meshes by mapping. Blending functions 169
5.14 Infinite domains and infinite elements 170
5.15 Singular elements by mapping – use in fracture mechanics, etc. 176
5.16 Computational advantage of numerically integrated finite elements 177
5.17 Problems 178

6 Problems in linear elasticity 187
6.1 Introduction 187
6.2 Governing equations 188
6.3 Finite element approximation 201
6.4 Reporting of results: displacements, strains and stresses 207
6.5 Numerical examples 209
6.6 Problems 217

7 Field problems – heat conduction, electric and magnetic potential and fluid flow 229
7.1 Introduction 229
7.2 General quasi-harmonic equation 230
7.3 Finite element solution process 233
7.4 Partial discretization – transient problems 237
7.5 Numerical examples – an assessment of accuracy 239
7.6 Concluding remarks 253
7.7 Problems 253

8 Automatic mesh generation 264
8.1 Introduction 264
8.2 Two-dimensional mesh generation – advancing front method 266
8.3 Surface mesh generation 286
8.4 Three-dimensional mesh generation – Delaunay triangulation 303
8.5 Concluding remarks 323
8.6 Problems 323

9 The patch test, reduced integration, and non-conforming elements 329
9.1 Introduction 329
9.2 Convergence requirements 330
9.3 The simple patch test (tests A and B) – a necessary condition for convergence 332
9.4 Generalized patch test (test C) and the single-element test 334
9.5 The generality of a numerical patch test 336
9.6 Higher order patch tests 336
### Contents

9.7 Application of the patch test to plane elasticity elements with 'standard' and 'reduced' quadrature 337
9.8 Application of the patch test to an incompatible element 343
9.9 Higher order patch test -- assessment of robustness 347
9.10 Concluding remarks 347
9.11 Problems 350

10 Mixed formulation and constraints -- complete field methods 356
10.1 Introduction 356
10.2 Discretization of mixed forms -- some general remarks 358
10.3 Stability of mixed approximation. The patch test 360
10.4 Two-field mixed formulation in elasticity 363
10.5 Three-field mixed formulations in elasticity 370
10.6 Complementary forms with direct constraint 375
10.7 Concluding remarks -- mixed formulation or a test of element 'robustness' 379
10.8 Problems 379

11 Incompressible problems, mixed methods and other procedures of solution 383
11.1 Introduction 383
11.2 Deviatoric stress and strain, pressure and volume change 383
11.3 Two-field incompressible elasticity (u-p form) 384
11.4 Three-field nearly incompressible elasticity (u-p-epsilon v form) 393
11.5 Reduced and selective integration and its equivalence to penalized mixed problems 398
11.6 A simple iterative solution process for mixed problems: Uzawa method 404
11.7 Stabilized methods for some mixed elements failing the incompressibility patch test 407
11.8 Concluding remarks 421
11.9 Problems 422

12 Multidomain mixed approximations -- domain decomposition and 'frame' methods 429
12.1 Introduction 429
12.2 Linking of two or more subdomains by Lagrange multipliers 430
12.3 Linking of two or more subdomains by perturbed lagrangian and penalty methods 436
12.4 Interface displacement 'frame' 442
12.5 Linking of boundary (or Trefftz)-type solution by the 'frame' of specified displacements 445
12.6 Subdomains with 'standard' elements and global functions 451
12.7 Concluding remarks 451
12.8 Problems 451

13 Errors, recovery processes and error estimates 456
13.1 Definition of errors 456
13.2 Superconvergence and optimal sampling points 459
13.3 Recovery of gradients and stresses 465