Contents

Editors xv
Prime Contributors xvii
Preface xxi
Acknowledgments xxvii
Abbreviations & Acronyms xxix

1 Introduction to UWB Signals and Systems 1
Andreas F. Molisch

1.1 History of UWB 1
1.2 Motivation 3
 1.2.1 Large Absolute Bandwidth 3
 1.2.2 Large Relative Bandwidth 5
1.3 UWB Signals and Systems 6
 1.3.1 Impulse Radio 6
 1.3.2 DS-CDMA 8
 1.3.3 OFDM 9
 1.3.4 Frequency Hopping 10
 1.3.5 RADAR 11
 1.3.6 Geolocation 11
1.4 Frequency Regulation 12
1.5 Applications, Operating Scenarios and Standardisation 13
1.6 System Outlook 15
 References 16

Part I Fundamentals 19

Introduction to Part I 21
Wasim Q. Malik and David J. Edwards

2 Fundamental Electromagnetic Theory 25
Mischa Dohler

2.1 Introduction 25
2.2 Maxwell’s Equations 25
 2.2.1 Differential Formulation 25
 2.2.2 Interpretation 26
 2.2.3 Key to Antennas and Propagation 27
2.2.4 Solving Maxwell’s Equations 28
2.2.5 Harmonic Representation 29
2.3 Resulting Principles 30
References 30

3 Basic Antenna Elements 31
Mischa Dohler
3.1 Introduction 31
3.2 Hertzian Dipole 31
 3.2.1 Far-Field – Fraunhofer Region 33
 3.2.2 Near-Field – Fresnel Region 33
3.3 Antenna Parameters and Terminology 34
 3.3.1 Polarisation 34
 3.3.2 Power Density 35
 3.3.3 Radiated Power 36
 3.3.4 Radiation Resistance 37
 3.3.5 Antenna Impedance 37
 3.3.6 Equivalent Circuit 37
 3.3.7 Antenna Matching 38
 3.3.8 Effective Length and Area 38
 3.3.9 Friis’ Transmission Formula 39
 3.3.10 Radiation Intensity 39
 3.3.11 Radiation Pattern 39
 3.3.12 (Antenna) Bandwidth 41
 3.3.13 Directive Gain, Directivity, Power Gain 41
 3.3.14 Radiation Efficiency 42
3.4 Basic Antenna Elements 42
 3.4.1 Finite-Length Dipole 42
 3.4.2 Monopole 44
 3.4.3 Printed Antennas 45
 3.4.4 Wideband and Frequency-Independent Elements 45
References 47

4 Antenna Arrays 49
Ernest E. Okon
4.1 Introduction 49
4.2 Point Sources 49
 4.2.1 Point Sources with Equal Amplitude and Phase 50
 4.2.2 Point Sources with Equal Amplitude and 180 Degrees Phase Difference 53
 4.2.3 Point Sources of Unequal Amplitude and Arbitrary Phase Difference 53
4.3 The Principle of Pattern Multiplication 55
4.4 Linear Arrays of \(n \) Elements 56
4.5 Linear Broadside Arrays with Nonuniform Amplitude Distributions 58
 4.5.1 The Binomial Distribution 59
 4.5.2 The Dolph–Tschebyscheff Distribution 59
4.6 Planar Arrays 62
 4.6.1 Rectangular Arrays 62
 4.6.2 Circular Arrays 63
4.7 Design Considerations
 4.7.1 Mutual Coupling
 4.7.2 Array Gain
4.8 Summary
References

5 Beamforming
Ben Allen
5.1 Introduction
 5.1.1 Historical Aspects
 5.1.2 Concept of Spatial Signal Processing
5.2 Antenna Arrays
 5.2.1 Linear Array
 5.2.2 Circular Array
 5.2.3 Planar Array
 5.2.4 Conformal Arrays
5.3 Adaptive Array Systems
 5.3.1 Spatial Filtering
 5.3.2 Adaptive Antenna Arrays
 5.3.3 Mutual Coupling and Correlation
5.4 Beamforming
 5.4.1 Adaptive Antenna Technology
 5.4.2 Beam Steering
 5.4.3 Grating Lobes
 5.4.4 Amplitude Weights
 5.4.5 Window Functions
5.5 Summary
References

6 Antenna Diversity Techniques
Junsheng Liu, Wasim Q. Malik, David J. Edwards and Mohammad Ghavami
6.1 Introduction
6.2 A Review of Fading
 6.2.1 Signal Fading
 6.2.2 Channel Distribution
6.3 Receive Diversity
 6.3.1 Single Branch without Diversity
 6.3.2 General Combining Schemes for Receive Diversity
 6.3.3 Maximum Ratio Combining
 6.3.4 Equal Gain Combining
 6.3.5 Selection Combining and Switched Diversity
 6.3.6 Fading Correlation
6.4 Transmit Diversity
 6.4.1 Channel Unknown to the Transmitter
 6.4.2 Channel Known to the Transmitter
6.5 MIMO Diversity Systems
References
Part II Antennas for UWB Communications

Introduction to Part II
Ernest E. Okon

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Part II</td>
<td>107</td>
</tr>
</tbody>
</table>

7 Theory of UWB Antenna Elements
Xiaodong Chen

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Introduction</td>
<td>111</td>
</tr>
<tr>
<td>7.2 Mechanism of UWB Monopole Antennas</td>
<td>112</td>
</tr>
<tr>
<td>7.2.1 Basic Features of a CPW-Fed Disc Monopole</td>
<td>112</td>
</tr>
<tr>
<td>7.2.2 Design Analysis</td>
<td>118</td>
</tr>
<tr>
<td>7.2.3 Operating Principle of UWB Monopole Antennas</td>
<td>120</td>
</tr>
<tr>
<td>7.3 Planar UWB Monopole Antennas</td>
<td>121</td>
</tr>
<tr>
<td>7.3.1 CPW-Fed Circular Disc Monopole</td>
<td>121</td>
</tr>
<tr>
<td>7.3.2 Microstrip Line Fed Circular Disc Monopole</td>
<td>125</td>
</tr>
<tr>
<td>7.3.3 Other Shaped Disc Monopoles</td>
<td>129</td>
</tr>
<tr>
<td>7.4 Planar UWB Slot Antennas</td>
<td>132</td>
</tr>
<tr>
<td>7.4.1 Microstrip/CPW Feed Slot Antenna Designs</td>
<td>132</td>
</tr>
<tr>
<td>7.4.2 Performance of Elliptical/Circular Slot Antennas</td>
<td>134</td>
</tr>
<tr>
<td>7.4.3 Design Analysis</td>
<td>138</td>
</tr>
<tr>
<td>7.5 Time-Domain Characteristics of Monopoles</td>
<td>140</td>
</tr>
<tr>
<td>7.5.1 Time-Domain Performance of Disc Monopoles</td>
<td>142</td>
</tr>
<tr>
<td>7.5.2 Time-Domain Performance of Slot Antenna</td>
<td>143</td>
</tr>
<tr>
<td>7.6 Summary</td>
<td>144</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>144</td>
</tr>
<tr>
<td>References</td>
<td>144</td>
</tr>
</tbody>
</table>

8 Antenna Elements for Impulse Radio
Zhi Ning Chen

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 Introduction</td>
<td>147</td>
</tr>
<tr>
<td>8.2 UWB Antenna Classification and Design Considerations</td>
<td>148</td>
</tr>
<tr>
<td>8.2.1 Classification of UWB Antennas</td>
<td>148</td>
</tr>
<tr>
<td>8.2.2 Design Considerations</td>
<td>150</td>
</tr>
<tr>
<td>8.3 Omnidirectional and Directional Designs</td>
<td>153</td>
</tr>
<tr>
<td>8.3.1 Omnidirectional Roll Antenna</td>
<td>153</td>
</tr>
<tr>
<td>8.3.2 Directional Antipodal Vivaldi Antenna</td>
<td>155</td>
</tr>
<tr>
<td>8.4 Summary</td>
<td>160</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>160</td>
</tr>
<tr>
<td>References</td>
<td>161</td>
</tr>
</tbody>
</table>

9 Planar Dipole-like Antennas for Consumer Products
Peter Massey

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1 Introduction</td>
<td>163</td>
</tr>
<tr>
<td>9.2 Computer Modelling and Measurement Techniques</td>
<td>164</td>
</tr>
<tr>
<td>9.3 Bicone Antennas and the Lossy Transmission Line Model</td>
<td>164</td>
</tr>
<tr>
<td>9.4 Planar Dipoles</td>
<td>167</td>
</tr>
<tr>
<td>9.4.1 Bowtie Dipoles</td>
<td>167</td>
</tr>
<tr>
<td>9.4.2 Elliptical Element Dipoles</td>
<td>171</td>
</tr>
<tr>
<td>9.4.3 Fan Element Dipoles</td>
<td>173</td>
</tr>
<tr>
<td>9.4.4 Diamond Dipoles</td>
<td>176</td>
</tr>
</tbody>
</table>
9.5 Practical Antennas
 9.5.1 Printed Elliptical Dipoles 178
 9.5.2 Line-Matched Monopoles 185
 9.5.3 Vivaldi Antenna 189
9.6 Summary 194
Acknowledgements 195
References 195

10 UWB Antenna Elements for Consumer Electronic Applications 197
 Dirk Manteuffel
10.1 Introduction 197
10.2 Numerical Modelling and Extraction of the UWB Characterisation 199
 10.2.1 FDTD Modelling 199
 10.2.2 UWB Antenna Characterisation by Spatio-Temporal Transfer Functions 201
 10.2.3 Calculation of Typical UWB Antenna Measures from the Transfer Function of the Antenna 202
 10.2.4 Example 204
10.3 Antenna Design and Integration 205
 10.3.1 Antenna Element Design and Optimisation 206
 10.3.2 Antenna Integration into a DVD Player 208
 10.3.3 Antenna Integration into a Mobile Device 211
 10.3.4 Conclusion 213
10.4 Propagation Modelling 214
10.5 System Analysis 215
10.6 Conclusions 218
References 220

11 Ultra-wideband Arrays 221
 Ernest E. Okon
11.1 Introduction 221
11.2 Linear Arrays 221
 11.2.1 Broadside Array 222
 11.2.2 End-fire Array 222
 11.2.3 End-fire Array with Increased Directivity 224
 11.2.4 Scanning Arrays 224
11.3 Null and Maximum Directions for Uniform Arrays 225
 11.3.1 Null Directions 225
 11.3.2 Maximum Directions 226
 11.3.3 Circle Representations 228
11.4 Phased Arrays 230
 11.4.1 Element Spacing Required to Avoid Grating Lobes 231
11.5 Elements for UWB Array Design 232
11.6 Modelling Considerations 234
11.7 Feed Configurations 234
 11.7.1 Active Array 235
 11.7.2 Passive Array 235
11.8 Design Considerations 238
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.9</td>
<td>Summary</td>
<td>239</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>240</td>
</tr>
<tr>
<td>12</td>
<td>UWB Beamforming</td>
<td>241</td>
</tr>
<tr>
<td>Mohammad Ghavami and Kaveh Heidary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.1</td>
<td>Introduction</td>
<td>241</td>
</tr>
<tr>
<td>12.2</td>
<td>Basic Concept</td>
<td>242</td>
</tr>
<tr>
<td>12.3</td>
<td>A Simple Delay-line Transmitter Wideband Array</td>
<td>243</td>
</tr>
<tr>
<td>12.3.1</td>
<td>Angles of Grating Lobes</td>
<td>246</td>
</tr>
<tr>
<td>12.3.2</td>
<td>Inter-null Beamwidth</td>
<td>248</td>
</tr>
<tr>
<td>12.4</td>
<td>UWB Mono-pulse Arrays</td>
<td>249</td>
</tr>
<tr>
<td>12.4.1</td>
<td>Problem Formulation</td>
<td>249</td>
</tr>
<tr>
<td>12.4.2</td>
<td>Computed Results</td>
<td>251</td>
</tr>
<tr>
<td>12.5</td>
<td>Summary</td>
<td>257</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>258</td>
</tr>
<tr>
<td>Part III</td>
<td>Propagation Measurements and Modelling for UWB Communications</td>
<td>259</td>
</tr>
<tr>
<td>Introduction to Part III</td>
<td>Mischa Dohler and Ben Allen</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Analysis of UWB Signal Attenuation Through Typical Building Materials</td>
<td>265</td>
</tr>
<tr>
<td>Domenico Porcino</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.1</td>
<td>Introduction</td>
<td>265</td>
</tr>
<tr>
<td>13.2</td>
<td>A Brief Overview of Channel Characteristics</td>
<td>267</td>
</tr>
<tr>
<td>13.3</td>
<td>The Materials Under Test</td>
<td>270</td>
</tr>
<tr>
<td>13.4</td>
<td>Experimental Campaign</td>
<td>272</td>
</tr>
<tr>
<td>13.4.1</td>
<td>Equipment Configuration</td>
<td>275</td>
</tr>
<tr>
<td>13.4.2</td>
<td>Results</td>
<td>278</td>
</tr>
<tr>
<td>13.5</td>
<td>Conclusions</td>
<td>281</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>281</td>
</tr>
<tr>
<td>14</td>
<td>Large- and Medium-scale Propagation Modelling</td>
<td>283</td>
</tr>
<tr>
<td>Mischa Dohler, Junsheng Liu, R. Michael Buehrer, Swaroop Venkatesh and Ben Allen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.1</td>
<td>Introduction</td>
<td>283</td>
</tr>
<tr>
<td>14.2</td>
<td>Deterministic Models</td>
<td>284</td>
</tr>
<tr>
<td>14.2.1</td>
<td>Free-space Pathloss – Excluding the Effect of Antennas</td>
<td>284</td>
</tr>
<tr>
<td>14.2.2</td>
<td>Free-space Pathloss – Considering the Effect of Antennas</td>
<td>287</td>
</tr>
<tr>
<td>14.2.3</td>
<td>Breakpoint Model</td>
<td>291</td>
</tr>
<tr>
<td>14.2.4</td>
<td>Ray-tracing and FDTD Approaches</td>
<td>296</td>
</tr>
<tr>
<td>14.3</td>
<td>Statistical-Empirical Models</td>
<td>297</td>
</tr>
<tr>
<td>14.3.1</td>
<td>Pathloss Coefficient</td>
<td>297</td>
</tr>
<tr>
<td>14.3.2</td>
<td>Shadowing</td>
<td>301</td>
</tr>
<tr>
<td>14.4</td>
<td>Standardised Reference Models</td>
<td>303</td>
</tr>
<tr>
<td>14.4.1</td>
<td>IEEE 802.15.3a</td>
<td>304</td>
</tr>
<tr>
<td>14.4.2</td>
<td>IEEE 802.15.4a</td>
<td>304</td>
</tr>
<tr>
<td>Chapter</td>
<td>Title</td>
<td>Pages</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>14.5</td>
<td>Conclusions</td>
<td>306</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>306</td>
</tr>
<tr>
<td>15</td>
<td>Small-scale Ultra-wideband Propagation Modelling</td>
<td>309</td>
</tr>
<tr>
<td></td>
<td>Swaroop Venkatesh, R. Michael Buehrer, Junsheng Liu and Mischa Dohler</td>
<td></td>
</tr>
<tr>
<td>15.1</td>
<td>Introduction</td>
<td>309</td>
</tr>
<tr>
<td>15.2</td>
<td>Small-scale Channel Modelling</td>
<td>310</td>
</tr>
<tr>
<td></td>
<td>15.2.1 Statistical Characterisation of the Channel Impulse Response</td>
<td>310</td>
</tr>
<tr>
<td></td>
<td>15.2.2 Deconvolution Methods and the Clean Algorithm</td>
<td>312</td>
</tr>
<tr>
<td></td>
<td>15.2.3 The Saleh-Valenzuela Model</td>
<td>312</td>
</tr>
<tr>
<td></td>
<td>15.2.4 Other Temporal Models</td>
<td>316</td>
</tr>
<tr>
<td>15.3</td>
<td>Spatial Modelling</td>
<td>321</td>
</tr>
<tr>
<td>15.4</td>
<td>IEEE 802.15.3a Standard Model</td>
<td>324</td>
</tr>
<tr>
<td>15.5</td>
<td>IEEE 802.15.4a Standard Model</td>
<td>325</td>
</tr>
<tr>
<td>15.6</td>
<td>Summary</td>
<td>327</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>327</td>
</tr>
<tr>
<td>16</td>
<td>Antenna Design and Propagation Measurements and Modelling</td>
<td>331</td>
</tr>
<tr>
<td></td>
<td>for UWB Wireless BAN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yang Hao, Akram Alomainy and Yan Zhao</td>
<td></td>
</tr>
<tr>
<td>16.1</td>
<td>Introduction</td>
<td>331</td>
</tr>
<tr>
<td>16.2</td>
<td>Propagation Channel Measurements and Characteristics</td>
<td>332</td>
</tr>
<tr>
<td></td>
<td>16.2.1 Antenna Element Design Requirements for WBAN</td>
<td>332</td>
</tr>
<tr>
<td></td>
<td>16.2.2 Antennas for UWB Wireless BAN Applications</td>
<td>333</td>
</tr>
<tr>
<td></td>
<td>16.2.3 On-Body Radio Channel Measurements</td>
<td>335</td>
</tr>
<tr>
<td></td>
<td>16.2.4 Propagation Channel Characteristics</td>
<td>338</td>
</tr>
<tr>
<td>16.3</td>
<td>WBAN Channel Modelling</td>
<td>345</td>
</tr>
<tr>
<td></td>
<td>16.3.1 Radio Channel Modelling Considerations</td>
<td>346</td>
</tr>
<tr>
<td></td>
<td>16.3.2 Two-Dimensional On-Body Propagation Channels</td>
<td>349</td>
</tr>
<tr>
<td></td>
<td>16.3.3 Three-Dimensional On-Body Propagation Channels</td>
<td>350</td>
</tr>
<tr>
<td></td>
<td>16.3.4 Pathloss Modelling</td>
<td>351</td>
</tr>
<tr>
<td>16.4</td>
<td>UWB System-Level Modelling of Potential Body-Centric Networks</td>
<td>353</td>
</tr>
<tr>
<td></td>
<td>16.4.1 System-Level Modelling</td>
<td>353</td>
</tr>
<tr>
<td></td>
<td>16.4.2 Performance Analysis</td>
<td>354</td>
</tr>
<tr>
<td>16.5</td>
<td>Summary</td>
<td>355</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>358</td>
</tr>
<tr>
<td>17</td>
<td>Ultra-wideband Spatial Channel Characteristics</td>
<td>361</td>
</tr>
<tr>
<td></td>
<td>Wasim Q. Malik, Junsheng Liu, Ben Allen and David J. Edwards</td>
<td></td>
</tr>
<tr>
<td>17.1</td>
<td>Introduction</td>
<td>361</td>
</tr>
<tr>
<td>17.2</td>
<td>Preliminaries</td>
<td>361</td>
</tr>
<tr>
<td>17.3</td>
<td>UWB Spatial Channel Representation</td>
<td>362</td>
</tr>
<tr>
<td>17.4</td>
<td>Characterisation Techniques</td>
<td>363</td>
</tr>
<tr>
<td>17.5</td>
<td>Increase in the Communication Rate</td>
<td>364</td>
</tr>
<tr>
<td></td>
<td>17.5.1 UWB Channel Capacity</td>
<td>364</td>
</tr>
<tr>
<td></td>
<td>17.5.2 Capacity with CSIR Only</td>
<td>365</td>
</tr>
</tbody>
</table>
17.5.3 Capacity with CSIT

- Page 366

17.5.4 Statistical Characterisation

- Page 366

17.5.5 Experimental Evaluation of Capacity

- Page 367

17.6 Signal Quality Improvement

- Page 370
 - 17.6.1 UWB SNR Gain
 - Page 371
 - 17.6.2 SNR Gain with CSIR Only
 - Page 371
 - 17.6.3 SNR Gain with CSIT
 - Page 371
 - 17.6.4 Statistical Characterisation
 - Page 372
 - 17.6.5 Experimental Evaluation of Diversity
 - Page 372
 - 17.6.6 Coverage Range Extension
 - Page 375

17.7 Performance Parameters

- Page 375
 - 17.7.1 Spatial Fading Correlation
 - Page 375
 - 17.7.2 Eigen Spectrum
 - Page 377
 - 17.7.3 Angular Spread
 - Page 379
 - 17.7.4 Array Orientation
 - Page 379
 - 17.7.5 Channel Memory
 - Page 380
 - 17.7.6 Channel Information Quality
 - Page 380

17.8 Summary

- Page 381
 - References
 - Page 381

Part IV UWB Radar, Imaging and Ranging

- Page 385
 - Introduction to Part IV
 - Anthony K. Brown

18 Localisation in NLOS Scenarios with UWB Antenna Arrays

- Page 389
 - Thomas Kaiser, Christiane Senger, Amr Eltaher and Bamrung Tau Sieskul

18.1 Introduction

- Page 389

18.2 Underlying Mathematical Framework

- Page 394

18.3 Properties of UWB Beamforming

- Page 398

18.4 Beamloc Approach

- Page 401

18.5 Algorithmic Framework

- Page 403

18.6 Time-delay Estimation

- Page 404

18.7 Simulation Results

- Page 406

18.8 Conclusions

- Page 410
 - References
 - Page 410

19 Antennas for Ground-penetrating Radar

- Page 413
 - Ian Craddock

19.1 Introduction

- Page 413

19.2 GPR Example Applications

- Page 413
 - 19.2.1 GPR for Demining
 - Page 413
 - 19.2.2 Utility Location and Road Inspection
 - Page 414
 - 19.2.3 Archaeology and Forensics
 - Page 416
 - 19.2.4 Built-structure Imaging
 - Page 418

19.3 Analysis and GPR Design

- Page 419
 - 19.3.1 Typical GPR Configuration
 - Page 419
 - 19.3.2 RF Propagation in Lossy Media
 - Page 420
19.3.3 Radar Waveform Choice 423
19.3.4 Other Antenna Design Criteria 424
19.4 Antenna Elements 425
19.4.1 Dipole, Resistively Loaded Dipole and Monopoles 425
19.4.2 Bicone and Bowtie 426
19.4.3 Horn Antennas 428
19.4.4 Vivaldi Antenna 428
19.4.5 CPW-fed Slot Antenna 429
19.4.6 Spiral Antennas 429
19.5 Antenna Measurements, Analysis and Simulation 430
19.5.1 Antenna Measurement 430
19.5.2 Antenna Analysis and Simulation 432
19.6 Conclusions 433
Acknowledgements 434
References 434

20 Wideband Antennas for Biomedical Imaging 437
Ian Craddock
20.1 Introduction 437
20.2 Detection and Imaging 437
20.2.1 Breast Cancer Detection Using Radio Waves 437
20.2.2 Radio-wave Imaging of the Breast 438
20.3 Waveform Choice and Antenna Design Criteria 440
20.4 Antenna Elements 441
20.4.1 Dipoles, Resistively Loaded Dipoles and Monopoles 441
20.4.2 Bowtie 442
20.4.3 Horn Antennas 443
20.4.4 Spiral Antennas 443
20.4.5 Stacked-patch Antennas 444
20.5 Measurements, Analysis and Simulation 445
20.5.1 Antenna Measurement 445
20.5.2 Antenna Analysis and Simulation 446
20.6 Conclusions 447
Acknowledgements 448
References 448

21 UWB Antennas for Radar and Related Applications 451
Anthony K. Brown
21.1 Introduction 451
21.2 Medium- and Long-Range Radar 452
21.3 UWB Reflector Antennas 453
21.3.1 Definitions 453
21.3.2 Equivalent Aperture Model for Impulse Radiation 454
21.3.3 Parabolic Antenna 456
21.4 UWB Feed Designs 459
21.4.1 Feed Pattern Effects 460
21.4.2 Phase Centre Location 460
21.4.3 Input Impedance 460
21.4.4 Polarisation 460
21.4.5 Blockage Effects 461

21.5 Feeds with Low Dispersion 461
 21.5.1 Planar Spiral Antennas 461
 21.5.2 TEM Feeds 462
 21.5.3 Impulse Radiating Antenna (IRA) 466

21.6 Summary 468
 References 468

Index 471