Microsensors, MEMS, and Smart Devices

Julian W. Gardner
University of Warwick, UK

Vijay K. Varadan
Osama O. Awadelkarim
Pennsylvania State University, USA
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xiii</td>
</tr>
<tr>
<td>About the Authors</td>
<td>xv</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>xvii</td>
</tr>
</tbody>
</table>

1 Introduction
1.1 Historical Development of Microelectronics 1
1.2 Evolution of Microsensors 2
1.3 Evolution of MEMS 5
1.4 Emergence of Micromachines 7
References 8

2 Electronic Materials and Processing
2.1 Introduction 9
2.2 Electronic Materials and their Deposition 9
 2.2.1 Oxide Film Formation by Thermal Oxidation 10
 2.2.2 Deposition of Silicon Dioxide and Silicon Nitride 11
 2.2.3 Polysilicon Film Deposition 15
2.3 Pattern Transfer 15
 2.3.1 The Lithographic Process 15
 2.3.2 Mask Formation 18
 2.3.3 Resist 18
 2.3.4 Lift-off Technique 21
2.4 Etching Electronic Materials 22
 2.4.1 Wet Chemical Etching 22
 2.4.2 Dry Etching 23
2.5 Doping Semiconductors 27
 2.5.1 Diffusion 30
 2.5.2 Ion Implantation 31
2.6 Concluding Remarks 32
References 34

3 MEMS Materials and their Preparation
3.1 Overview 35
 3.1.1 Atomic Structure and the Periodic Table 35
3.1.2 Atomic Bonding
3.1.3 Crystallinity
3.2 Metals
3.2.1 Physical and Chemical Properties
3.2.2 Metallisation
3.3 Semiconductors
3.3.1 Semiconductors: Electrical and Chemical Properties
3.3.2 Semiconductors: Growth and Deposition
3.4 Ceramic, Polymeric, and Composite Materials
References

4 Standard Microelectronic Technologies
4.1 Introduction
4.2 Wafer Preparation
4.2.1 Crystal Growth
4.2.2 Wafer Manufacture
4.2.3 Epitaxial Deposition
4.3 Monolithic Processing
4.3.1 Bipolar Processing
4.3.2 Characteristics of BJTs
4.3.3 MOS Processing
4.3.4 Characteristics of FETs
4.3.5 SOI CMOS Processing
4.4 Monolithic Mounting
4.4.1 Die Bonding and Wire Bonding
4.4.2 Tape-Automated Bonding
4.4.3 Flip TAB Bonding
4.4.4 Flip-Chip Mounting
4.5 Printed Circuit Board Technologies
4.5.1 Solid Board
4.5.2 Flexible Board
4.5.3 Plastic Moulded
4.6 Hybrid and MCM Technologies
4.6.1 Thick Film
4.6.2 Multichip Modules
4.6.3 Ball Grid Array
4.7 Programmable Devices And ASICs
References

5 Silicon Micromachining: Bulk
5.1 Introduction
5.2 Isotropic and Orientation-Dependent Wet Etching
5.3 Etch-Stop Techniques
5.3.1 Doping-Selective Etching (DSE)
5.3.2 Conventional Bias-Dependent BSE or Electrochemical Etch-Stop
References
7.7 Polymeric MEMS Architecture with Silicon, Metal, and Ceramics
 7.7.1 Ceramic MSL 197
 7.7.2 Metallic Microstructures 202
 7.7.3 Metal–Polymer Microstructures 205
 7.7.4 Localised Electrochemical Deposition 206
7.8 Combined Silicon and Polymeric Structures 210
 7.8.1 Architecture Combination by Photoforming Process 210
 7.8.2 MSL Integrated with Thick Film Lithography 212
 7.8.3 AMANDA Process 213
7.9 Applications 216
 7.9.1 Microactuators Fabricated by MSL 216
 7.9.2 Microconcentrator 218
 7.9.3 Microdevices Fabricated by the AMANDA Process 220
7.10 Concluding Remarks 224
References 225
8 Microsensors 227
 8.1 Introduction 227
 8.2 Thermal Sensors 230
 8.2.1 Resistive Temperature Microsensors 231
 8.2.2 Microthermocouples 232
 8.2.3 Thermodiodes and Thermotransistors 236
 8.2.4 SAW Temperature Sensor 239
 8.3 Radiation Sensors 240
 8.3.1 Photoconductive Devices 241
 8.3.2 Photovoltaic Devices 242
 8.3.3 Pyroelectric Devices 244
 8.3.4 Microantenna 245
 8.4 Mechanical Sensors 247
 8.4.1 Overview 247
 8.4.2 Micromechanical Components and Statics 249
 8.4.3 Microshuttles and Dynamics 251
 8.4.4 Mechanical Microstructures 254
 8.4.5 Pressure Microsensors 257
 8.4.6 Microaccelerometers 263
 8.4.7 Microgyrometers 266
 8.4.8 Flow Microsensors 268
 8.5 Magnetic Sensors 270
 8.5.1 Magnetogalvanic Microsensors 272
 8.5.2 Magnetoresistive Devices 274
 8.5.3 Magnetodiodes and Magnetotransistors 275
 8.5.4 Acoustic Devices and SQUIDs 277
 8.6 Bio(chemical) Sensors 280
 8.6.1 Conductimetric Devices 282
 8.6.2 Potentiometric Devices 292
 8.6.3 Others 296
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.7</td>
<td>Concluding Remarks</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>300</td>
</tr>
<tr>
<td>9</td>
<td>Introduction to SAW Devices</td>
<td>303</td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>303</td>
</tr>
<tr>
<td>9.2</td>
<td>Saw Device Development and History</td>
<td>303</td>
</tr>
<tr>
<td>9.3</td>
<td>The Piezoelectric Effect</td>
<td>306</td>
</tr>
<tr>
<td>9.3.1</td>
<td>Interdigital Transducers in SAW Devices</td>
<td>307</td>
</tr>
<tr>
<td>9.4</td>
<td>Acoustic Waves</td>
<td>308</td>
</tr>
<tr>
<td>9.4.1</td>
<td>Rayleigh Surface Acoustic Waves</td>
<td>308</td>
</tr>
<tr>
<td>9.4.2</td>
<td>Shear Horizontal Acoustic Waves</td>
<td>311</td>
</tr>
<tr>
<td>9.4.3</td>
<td>Love Surface Acoustic Waves</td>
<td>312</td>
</tr>
<tr>
<td>9.5</td>
<td>Concluding Remarks</td>
<td>314</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>316</td>
</tr>
<tr>
<td>10</td>
<td>Surface Acoustic Waves in Solids</td>
<td>319</td>
</tr>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>319</td>
</tr>
<tr>
<td>10.2</td>
<td>Acoustic Wave Propagation</td>
<td>320</td>
</tr>
<tr>
<td>10.3</td>
<td>Acoustic Wave Propagation Representation</td>
<td>321</td>
</tr>
<tr>
<td>10.4</td>
<td>Introduction to Acoustics</td>
<td>321</td>
</tr>
<tr>
<td>10.4.1</td>
<td>Particle Displacement and Strain</td>
<td>321</td>
</tr>
<tr>
<td>10.4.2</td>
<td>Stress</td>
<td>323</td>
</tr>
<tr>
<td>10.4.3</td>
<td>The Piezoelectric Effect</td>
<td>324</td>
</tr>
<tr>
<td>10.5</td>
<td>Acoustic Wave Propagation</td>
<td>325</td>
</tr>
<tr>
<td>10.5.1</td>
<td>Uniform Plane Waves in a Piezoelectric Solid: Quasi-Static Approximation</td>
<td>325</td>
</tr>
<tr>
<td>10.5.2</td>
<td>Shear Horizontal or Acoustic Plate Modes</td>
<td>328</td>
</tr>
<tr>
<td>10.5.3</td>
<td>Love Modes</td>
<td>330</td>
</tr>
<tr>
<td>10.6</td>
<td>Concluding Remarks</td>
<td>334</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>334</td>
</tr>
<tr>
<td>11</td>
<td>IDT Microsensor Parameter Measurement</td>
<td>337</td>
</tr>
<tr>
<td>11.1</td>
<td>Introduction to IDT SAW Sensor Instrumentation</td>
<td>337</td>
</tr>
<tr>
<td>11.2</td>
<td>Acoustic Wave Sensor Instrumentation</td>
<td>337</td>
</tr>
<tr>
<td>11.2.1</td>
<td>Introduction</td>
<td>337</td>
</tr>
<tr>
<td>11.3</td>
<td>Network Analyser and Vector Voltmeter</td>
<td>338</td>
</tr>
<tr>
<td>11.4</td>
<td>Analogue (Amplitude) Measuring System</td>
<td>339</td>
</tr>
<tr>
<td>11.5</td>
<td>Phase Measurement System</td>
<td>340</td>
</tr>
<tr>
<td>11.6</td>
<td>Frequency Measurement System</td>
<td>341</td>
</tr>
<tr>
<td>11.7</td>
<td>Acoustic Wave Sensor Output Frequency Translation</td>
<td>342</td>
</tr>
<tr>
<td>11.8</td>
<td>Measurement Setup</td>
<td>343</td>
</tr>
<tr>
<td>11.9</td>
<td>Calibration</td>
<td>344</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>345</td>
</tr>
<tr>
<td>12</td>
<td>IDT Microsensor Fabrication</td>
<td>347</td>
</tr>
<tr>
<td>12.1</td>
<td>Introduction</td>
<td>347</td>
</tr>
<tr>
<td>12.2</td>
<td>Saw-IDT Microsensor Fabrication</td>
<td>347</td>
</tr>
</tbody>
</table>
12.2 Mask Generation

12.2.1 Mask Generation 347
12.2.2 Wafer Preparation 348
12.2.3 Metallisation 349
12.2.4 Photolithography 350
12.2.5 Wafer Dicing 352

12.3 Deposition of Waveguide Layer

12.3.1 Introduction 353
12.3.2 TMS PECVD Process and Conditions 354

12.4 Concluding Remarks

References 358

13 IDT Microsensors

13.1 Introduction 359
13.2 Saw Device Modeling via Coupled-mode Theory 360
13.3 Wireless SAW-based Microsensors 364

14 MEMS-IDT Microsensors

14.1 Introduction 397
14.2 Principles of a MEMS-IDT Accelerometer 398
14.3 Fabrication of a MEMS-IDT Accelerometer 399
14.3.1 Fabrication of the SAW Device 401
14.3.2 Integration of the SAW Device and Seismic Mass 402
14.4 Testing of a MEMS-IDT Accelerometer 402
14.4.1 Measurement Setup 403
14.4.2 Calibration Procedure 404
14.4.3 Time Domain Measurement 405
14.4.4 Experimental 406
14.4.5 Fabrication of Seismic Mass 408
14.5 Wireless Readout 412
14.6 Hybrid Accelerometers and Gyroscopes 414
14.7 Concluding Remarks 416

15 Smart Sensors and MEMS

15.1 Introduction 417
15.2 Smart Sensors 421
15.3 MEMS Devices 434
15.4 Concluding Remarks 442

References 443