# Contents

<table>
<thead>
<tr>
<th>Trademarks</th>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>About the Author</td>
<td>vi</td>
</tr>
<tr>
<td>Preface</td>
<td>xxi</td>
</tr>
</tbody>
</table>

## Chapter 1

### Introduction

1.1 The Evolution of Graphics Hardware and Games 1
1.2 The Evolution of This Book and Its Software 2
1.3 A Summary of the Chapters 3

## Chapter 2

### The Graphics System

2.1 The Foundation 8
  2.1.1 Coordinate Systems 9
  2.1.2 Handedness and Cross Products 10
  2.1.3 Points and Vectors 15

2.2 Transformations 18
  2.2.1 Linear Transformations 18
  2.2.2 Affine Transformations 29
  2.2.3 Projective Transformations 31
  2.2.4 Properties of Perspective Projection 35
  2.2.5 Homogeneous Points and Matrices 40

2.3 Cameras 43
  2.3.1 The Perspective Camera Model 43
  2.3.2 Model or Object Space 48
  2.3.3 World Space 48
  2.3.4 View, Camera, or Eye Space 50
  2.3.5 Clip, Projection, or Homogeneous Space 52
  2.3.6 Window Space 56
  2.3.7 Putting Them All Together 58

2.4 Culling and Clipping 66
  2.4.1 Object Culling 66
## Contents

2.4.2 Back-Face Culling 67  
2.4.3 Clipping to the View Frustum 70  

2.5 **Rasterizing** 77  
2.5.1 Line Segments 77  
2.5.2 Circles 82  
2.5.3 Ellipses 84  
2.5.4 Triangles 89  

2.6 **Vertex Attributes** 92  
2.6.1 Colors 92  
2.6.2 Lighting and Materials 92  
2.6.3 Textures 99  
2.6.4 Transparency, Opacity, and Blending 117  
2.6.5 Fog 122  
2.6.6 And Many More 123  
2.6.7 Rasterizing Attributes 124  

2.7 **Issues of Software, Hardware, and APIs** 125  
2.7.1 A General Discussion 125  
2.7.2 Portability versus Performance 127  

2.8 **API Conventions** 128  
2.8.1 Matrix Representation and Storage 129  
2.8.2 Matrix Composition 134  
2.8.3 View Matrices 134  
2.8.4 Projection Matrices 136  
2.8.5 Window Handedness 139  
2.8.6 Rotations 140  
2.8.7 Fast Computations Using the Graphics API 143  

---

### CHAPTER 3  

**Renderers** 147  

3.1 **Software Rendering** 149  
3.1.1 Vertex Shaders 149  
3.1.2 Back-Face Culling 151  
3.1.3 Clipping 154  
3.1.4 Rasterizing 158  
3.1.5 Edge Buffers 159  
3.1.6 Scan Line Processing 161  
3.1.7 Pixel Shaders 164  
3.1.8 Stencil Buffering 167  
3.1.9 Depth Buffering 169  
3.1.10 Alpha Blending 170
CHAPTER 5

CONTROLLER-BASED ANIMATION

5.1 KEYFRAME ANIMATION
5.1.1 Interpolation of Position
5.1.2 Interpolation of Orientation
5.1.3 Interpolation of Scale

5.2 KEYFRAME COMPRESSION
5.2.1 Fitting Points with a B-Spline Curve
5.2.2 Evaluation of a B-Spline Curve
5.2.3 Optimized Evaluation for Degree 3

5.3 INVERSE KINEMATICS
5.3.1 Numerical Solution by Jacobian Methods
5.3.2 Numerical Solution by Nonlinear Optimization
5.3.3 Numerical Solution by Cyclic Coordinate Descent

5.4 SKINNING

5.5 VERTEX MORPHING

5.6 PARTICLE SYSTEMS

CHAPTER 6

SPATIAL SORTING

6.1 BINARY SPACE PARTITIONING TREES
6.1.1 BSP Tree Construction
6.1.2 BSP Tree Usage

6.2 NODE-BASED SORTING

6.3 PORTALS
8.5.2 Moving between Rooms 486
8.5.3 Moving between Levels 486
8.5.4 Moving through the Outdoor Environment 488
8.5.5 Blueprints 488
8.5.6 Visibility Graphs 489
8.5.7 Envelope Construction 494
8.5.8 Basic Data Structures 503
8.5.9 Efficient Calculation of the Visibility Graph 504

Chapter 9

Physics 507

9.1 Particle Systems 508
9.2 Mass-Spring Systems 510
  9.2.1 Curve Masses 510
  9.2.2 Surface Masses 513
  9.2.3 Volume Masses 516
  9.2.4 Arbitrary Configurations 519
9.3 Deformable Bodies 521
9.4 Rigid Bodies 522
  9.4.1 The Rigid Body Class 525
  9.4.2 Computing the Inertia Tensor 527

Chapter 10

Standard Objects 529

10.1 Linear Components 529
10.2 Planar Components 532
10.3 Boxes 534
10.4 Quadrics 535
  10.4.1 Spheres 535
  10.4.2 Ellipsoids 535
  10.4.3 Cylinders 537
  10.4.4 Cones 537
10.5 Sphere-Swept Volumes 538
  10.5.1 Capsules 539
  10.5.2 Lozenges 539
CHAPTER 11
CURVES

11.1 Definitions 542
11.2 Reparameterization by Arc Length 543
11.3 Bézier Curves 545
  11.3.1 Definitions 545
  11.3.2 Evaluation 545
  11.3.3 Degree Elevation 546
  11.3.4 Degree Reduction 546
11.4 Natural, Clamped, and Closed Cubic Splines 548
  11.4.1 Natural Splines 550
  11.4.2 Clamped Splines 550
  11.4.3 Closed Splines 550
11.5 B-Spline Curves 551
  11.5.1 Types of Knot Vectors 552
  11.5.2 Evaluation 553
  11.5.3 Local Control 558
  11.5.4 Closed Curves 558
11.6 NURBS Curves 560
11.7 Tension-Continuity-Bias Splines 562
11.8 Parametric Subdivision 566
  11.8.1 Subdivision by Uniform Sampling 566
  11.8.2 Subdivision by Arc Length 566
  11.8.3 Subdivision by Midpoint Distance 567
  11.8.4 Fast Subdivision for Cubic Curves 568
11.9 Orientation of Objects on Curved Paths 570
  11.9.1 Orientation Using the Frenet Frame 571
  11.9.2 Orientation Using a Fixed Up-Vector 571

CHAPTER 12
SURFACES

12.1 Introduction 573
12.2 Bézier Rectangle Patches 574
  12.2.1 Definitions 574
  12.2.2 Evaluation 575
12.2.3 Degree Elevation 575
12.2.4 Degree Reduction 576

12.3 BÉZIER TRIANGLE PATCHES 578
12.3.1 Definitions 578
12.3.2 Evaluation 578
12.3.3 Degree Elevation 580
12.3.4 Degree Reduction 580

12.4 B-SPLINE RECTANGLE PATCHES 582

12.5 NURBS RECTANGLE PATCHES 583

12.6 SURFACES BUILT FROM CURVES 584
12.6.1 Cylinder Surfaces 584
12.6.2 Generalized Cylinder Surfaces 585
12.6.3 Revolution Surfaces 586
12.6.4 Tube Surfaces 586

12.7 PARAMETRIC SUBDIVISION 587
12.7.1 Subdivision of Rectangle Patches 587
12.7.2 Subdivision of Triangle Patches 602

CHAPTER

13

CONTAINMENT METHODS 609

13.1 SPHERES 609
13.1.1 Point in Sphere 609
13.1.2 Sphere Containing Points 610
13.1.3 Merging Spheres 616

13.2 BOXES 617
13.2.1 Point in Box 617
13.2.2 Box Containing Points 618
13.2.3 Merging Boxes 625

13.3 CAPSULES 627
13.3.1 Point in Capsule 627
13.3.2 Capsule Containing Points 628
13.3.3 Merging Capsules 629

13.4 LOZENGES 630
13.4.1 Point in Lozenge 631
13.4.2 Lozenge Containing Points 631
13.4.3 Merging Lozenges 633

13.5 CYLINDERS 634
13.5.1 Point in Cylinder 634
CHAPTER

Distance Methods

13.5.2 Cylinder Containing Points 634
13.5.3 Least-Squares Line Moved to Minimum-Area Center 635
13.5.4 Merging Cylinders 635

13.6 ELLIPSOIDS 636
13.6.1 Point in Ellipsoid 636
13.6.2 Ellipsoid Containing Points 637
13.6.3 Merging Ellipsoids 638

14.1 POINT TO LINEAR COMPONENT 639
14.1.1 Point to Line 640
14.1.2 Point to Ray 640
14.1.3 Point to Segment 641

14.2 LINEAR COMPONENT TO LINEAR COMPONENT 642
14.2.1 Line to Line 642
14.2.2 Line to Ray 643
14.2.3 Line to Segment 644
14.2.4 Ray to Ray 645
14.2.5 Ray to Segment 645
14.2.6 Segment to Segment 645

14.3 POINT TO TRIANGLE 646

14.4 LINEAR COMPONENT TO TRIANGLE 651
14.4.1 Line to Triangle 651
14.4.2 Ray to Triangle 654
14.4.3 Segment to Triangle 654

14.5 POINT TO RECTANGLE 655

14.6 LINEAR COMPONENT TO RECTANGLE 657
14.6.1 Line to Rectangle 657
14.6.2 Ray to Rectangle 659
14.6.3 Segment to Rectangle 660

14.7 TRIANGLE OR RECTANGLE TO TRIANGLE OR RECTANGLE 661

14.8 POINT TO ORIENTED BOX 663

14.9 LINEAR COMPONENT TO ORIENTED BOX 663
14.9.1 Line to Oriented Box 664
14.9.2 Ray to Oriented Box 666
14.9.3 Segment to Oriented Box 666

14.10 TRIANGLE TO ORIENTED BOX 667
14.11 **Rectangle to Oriented Box** 669
14.12 **Oriented Box to Oriented Box** 670
14.13 **Miscellaneous** 672
   14.13.1 Point to Ellipse 672
   14.13.2 Point to Ellipsoid 673
   14.13.3 Point to Quadratic Curve or to Quadric Surface 674
   14.13.4 Point to Circle in 3D 675
   14.13.5 Circle to Circle in 3D 676

**Chapter 15**

**Intersection Methods** 681

15.1 **Linear Components and Convex Objects** 681
15.2 **Linear Component and Planar Component** 684
15.3 **Linear Component and Oriented Box** 686
   15.3.1 Test-Intersection Query 686
   15.3.2 Find-Intersection Query 693
15.4 **Linear Component and Sphere** 698
   15.4.1 Line and Sphere 698
   15.4.2 Ray and Sphere 700
   15.4.3 Segment and Sphere 701
15.5 **Line and Sphere-Swept Volume** 703
   15.5.1 Line and Capsule 703
   15.5.2 Line and Lozenge 708
15.6 **Line and Quadric Surface** 709
   15.6.1 Line and Ellipsoid 709
   15.6.2 Line and Cylinder 710
   15.6.3 Line and Cone 710
15.7 **Culling Objects by Planes** 710
   15.7.1 Oriented Boxes 711
   15.7.2 Spheres 712
   15.7.3 Capsules 712
   15.7.4 Lozenges 713
   15.7.5 Ellipsoids 713
   15.7.6 Cylinders 715
   15.7.7 Cones 716
   15.7.8 Convex Polygons or Convex Polyhedra 717
16.1 **SYSTEMS OF EQUATIONS**
- 16.1.1 Linear Systems
- 16.1.2 Polynomial Systems

16.2 **EIGENSYSTEMS**
- 16.2.1 Extrema of Quadratic Forms
- 16.2.2 Extrema of Constrained Quadratic Forms

16.3 **LEAST-SQUARES FITTING**
- 16.3.1 Linear Fitting of Points \((x, f(x))\)
- 16.3.2 Linear Fitting of Points Using Orthogonal Regression
- 16.3.3 Planar Fitting of Points \((x,y,f(x,y))\)
- 16.3.4 Planar Fitting of Points Using Orthogonal Regression
- 16.3.5 Fitting a Circle to 2D Points
- 16.3.6 Fitting a Sphere to 3D Points
- 16.3.7 Fitting a Quadratic Curve to 2D Points
- 16.3.8 Fitting a Quadric Surface to 3D Points

16.4 **MINIMIZATION**
- 16.4.1 Methods in One Dimension
- 16.4.2 Methods in Many Dimensions

16.5 **ROOT FINDING**
- 16.5.1 Methods in One Dimension
- 16.5.2 Methods in Many Dimensions

16.6 **INTEGRATION**
- 16.6.1 Romberg Integration
- 16.6.2 Gaussian Quadrature

16.7 **DIFFERENTIAL EQUATIONS**
- 16.7.1 Ordinary Differential Equations
- 16.7.2 Partial Differential Equations

16.8 **FAST FUNCTION EVALUATION**
- 16.8.1 Square Root and Inverse Square Root
- 16.8.2 Sine, Cosine, and Tangent
- 16.8.3 Inverse Tangent
Chapter 17

Rotations

17.1 Rotation Matrices
   17.1.1 Axis/Angle to Matrix
   17.1.2 Matrix to Axis/Angle
   17.1.3 Interpolation

17.2 Quaternions
   17.2.1 The Linear Algebraic View of Quaternions
   17.2.2 Rotation of a Vector
   17.2.3 Product of Rotations
   17.2.4 The Classical View of Quaternions
   17.2.5 Axis/Angle to Quaternion
   17.2.6 Quaternion to Axis/Angle
   17.2.7 Matrix to Quaternion
   17.2.8 Quaternion to Matrix
   17.2.9 Interpolation

17.3 Euler Angles

17.4 Performance Issues

17.5 The Curse of Nonuniform Scaling
   17.5.1 Gram-Schmidt Orthonormalization
   17.5.2 Eigendecomposition
   17.5.3 Polar Decomposition
   17.5.4 Singular Value Decomposition

Chapter 18

Object-Oriented Infrastructure

18.1 Object-Oriented Software Construction
   18.1.1 Software Quality
   18.1.2 Modularity
   18.1.3 Reusability
   18.1.4 Functions and Data
   18.1.5 Object Orientation

18.2 Style, Naming Conventions, and Namespaces

18.3 Run-Time Type Information
   18.3.1 Single-Inheritance Systems
   18.3.2 Multiple-Inheritance Systems
   18.3.3 Macro Support

18.4 Templates