Speckle Phenomena in Optics
Theory and Applications

Joseph W. Goodman

ROBERTS & COMPANY
Englewood, Colorado
Contents

Preface ... ix

1 Origins and Manifestations of Speckle ... 1
 1.1 General Background .. 1
 1.2 Intuitive Explanation of the Cause of Speckle ... 2
 1.3 Some Mathematical Preliminaries ... 5

2 Random Phasor Sums ... 7
 2.1 First and Second Moments of the Real and Imaginary Parts of the
 Resultant Phasor ... 8
 2.2 Random Walk with a Large Number of Independent Steps 10
 2.3 Random Phasor Sum Plus a Known Phasor .. 13
 2.4 Sums of Random Phasor Sums ... 17
 2.5 Finite Number of Equal Length Components ... 17
 2.6 Nonuniform Distribution of Phases ... 19

3 First-Order Statistical Properties ... 25
 3.1 Definition of Intensity ... 25
 3.2 First-Order Statistics of the Intensity and Phase ... 27
 3.2.1 Large Number of Random Phasors ... 27
 3.2.2 Constant Phasor plus a Random Phasor Sum .. 30
 3.2.3 Finite Number of Equal-Length Phasors ... 34
 3.3 Sums of Speckle Patterns ... 37
 3.3.1 Sums on an Amplitude Basis ... 38
 3.3.2 Sum of Two Independent Speckle Intensities ... 38
Contents

3.3.3 Sum of N Independent Speckle Intensities 42
3.3.4 Sums of Correlated Speckle Intensities 44
3.4 Partially Polarized Speckle ... 47
3.5 Partially Developed Speckle ... 50
3.6 Speckled Speckle, or Compound Speckle Statistics 53
 3.6.1 Speckle Driven by a Negative Exponential Intensity Distribution ... 54
 3.6.2 Speckle Driven by a Gamma Intensity Distribution 55
 3.6.3 Sums of Independent Speckle Patterns Driven by a Gamma Intensity Distribution ... 57

4 Higher-Order Statistical Properties of Speckle 59
 4.1 Multivariate Gaussian Statistics 59
 4.2 Application to Speckle Fields 60
 4.3 Multidimensional Statistics of Speckle 62
 4.3.1 Joint Density Function of the Amplitudes 64
 4.3.2 Joint Density Function of the Phases 65
 4.3.3 Joint Density Function of the Intensities 68
 4.4 Autocorrelation Function and Power Spectrum of Speckle 73
 4.4.1 Free-Space Propagation Geometry 73
 4.4.2 Imaging Geometry ... 80
 4.4.3 Speckle Size in Depth ... 82
 4.5 Dependence of Speckle on Scatterer Microstructure 84
 4.5.1 Surface vs. Volume Scattering 85
 4.5.2 Effect of a Finite Correlation Area of the Scattered Wave ... 85
 4.5.3 A Regime where Speckle Size Is Independent of Scattering Spot Size ... 90
 4.5.4 Relation between the Correlation Areas of the Scattered Wave and the Surface Height Fluctuations—Surface Scattering 92
 4.5.5 Dependence of Speckle Contrast on Surface Roughness—Surface Scattering ... 98
 4.5.6 Properties of Speckle Resulting from Volume Scattering 102
 4.6 Statistics of Integrated and Blurred Speckle 105
 4.6.1 Mean and Variance of Integrated Speckle 106
 4.6.2 Approximate Result for the Probability Density Function of Integrated Intensity ... 111
 4.6.3 “Exact” Result for the Probability Density Function of Integrated Intensity ... 113
 4.6.4 Integration of Partially Polarized Speckle Patterns 118
 4.7 Statistics of Derivatives of Speckle Intensity and Phase 120
 4.7.1 Background .. 121
 4.7.2 Parameters for Various Scattering Spot Shapes 123
4.7.3 Derivatives of Speckle Phase: Ray Directions in a Speckle Pattern ... 124
4.7.4 Derivatives of Speckle Intensity ... 127
4.7.5 Level Crossings of Speckle Patterns 130
4.8 Zeros of Speckle Patterns: Optical Vortices 133
 4.8.1 Conditions Required for a Zero of Intensity to Occur 133
 4.8.2 Properties of Speckle Phase in the Vicinity of a Zero of Intensity .. 133
 4.8.3 The Density of Vortices in Fully Developed Speckle 136
 4.8.4 The Density of Vortices for Fully Developed Speckle Plus a Coherent Background ... 138

5 Optical Methods for Suppressing Speckle 141
 5.1 Polarization Diversity ... 142
 5.2 Temporal Averaging with a Moving Diffuser 143
 5.2.1 Background ... 143
 5.2.2 Smooth Object .. 149
 5.2.3 Rough Object ... 151
 5.3 Wavelength and Angle Diversity .. 153
 5.3.1 Free-Space Propagation, Reflection Geometry 154
 5.3.2 Free-Space Propagation, Transmission Geometry 164
 5.3.3 Imaging Geometry ... 167
 5.4 Temporal and Spatial Coherence Reduction 170
 5.4.1 Coherence Concepts in Optics 170
 5.4.2 Moving Diffusers and Coherence Reduction 172
 5.4.3 Speckle Suppression by Reduction of Temporal Coherence .. 175
 5.4.4 Speckle Suppression by Reduction of Spatial Coherence 178
 5.5 Use of Temporal Coherence to Destroy Spatial Coherence 185
 5.6 Compounding Speckle Suppression Techniques 186

6 Speckle in Certain Imaging Applications 187
 6.1 Speckle in the Eye .. 187
 6.2 Speckle in Holography .. 190
 6.2.1 Principles of Holography .. 190
 6.2.2 Speckle Suppression in Holographic Images 192
 6.3 Speckle in Optical Coherence Tomography 195
 6.3.1 Overview of the OCT Imaging Technique 195
 6.3.2 Analysis of OCT .. 196
 6.3.3 Speckle and Speckle Suppression in OCT 200
 6.4 Speckle in Optical Projection Displays 203
 6.4.1 Anatomies of Projection Displays 204
 6.4.2 Speckle Suppression in Projection Displays 208
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4.3</td>
<td>Polarization Diversity</td>
<td>208</td>
</tr>
<tr>
<td>6.4.4</td>
<td>A Moving Screen</td>
<td>209</td>
</tr>
<tr>
<td>6.4.5</td>
<td>Wavelength Diversity</td>
<td>211</td>
</tr>
<tr>
<td>6.4.6</td>
<td>Angle Diversity</td>
<td>211</td>
</tr>
<tr>
<td>6.4.7</td>
<td>Overdesign of the Projection Optics</td>
<td>213</td>
</tr>
<tr>
<td>6.4.8</td>
<td>Changing Diffuser Projected onto the Screen</td>
<td>214</td>
</tr>
<tr>
<td>6.4.9</td>
<td>Specially Designed Screens</td>
<td>225</td>
</tr>
<tr>
<td>6.5</td>
<td>Speckle in Projection Microlithography</td>
<td>228</td>
</tr>
<tr>
<td>6.5.1</td>
<td>Coherence Properties of Excimer Lasers</td>
<td>228</td>
</tr>
<tr>
<td>6.5.2</td>
<td>Temporal Speckle</td>
<td>229</td>
</tr>
<tr>
<td>6.5.3</td>
<td>From Exposure Fluctuations to Line Position Fluctuations</td>
<td>231</td>
</tr>
<tr>
<td>7</td>
<td>Speckle in Certain Nonimaging Applications</td>
<td>235</td>
</tr>
<tr>
<td>7.1</td>
<td>Speckle in Multimode Fibers</td>
<td>235</td>
</tr>
<tr>
<td>7.1.1</td>
<td>Modal Noise in Fibers</td>
<td>237</td>
</tr>
<tr>
<td>7.1.2</td>
<td>Statistics of Constrained Speckle</td>
<td>239</td>
</tr>
<tr>
<td>7.1.3</td>
<td>Frequency Dependence of Modal Noise</td>
<td>243</td>
</tr>
<tr>
<td>7.2</td>
<td>Effects of Speckle on Optical Radar Performance</td>
<td>248</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Spatial Correlation of the Speckle Returned from Distant Targets</td>
<td>250</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Speckle at Low Light Levels</td>
<td>252</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Detection Statistics—Direct Detection</td>
<td>256</td>
</tr>
<tr>
<td>7.2.4</td>
<td>Detection Statistics—Heterodyne Detection</td>
<td>260</td>
</tr>
<tr>
<td>7.2.5</td>
<td>Comparison of Direct Detection and Heterodyne Detection</td>
<td>270</td>
</tr>
<tr>
<td>7.2.6</td>
<td>Reduction of the Effects of Speckle in Optical Radar Detection</td>
<td>273</td>
</tr>
<tr>
<td>8</td>
<td>Speckle and Metrology</td>
<td>275</td>
</tr>
<tr>
<td>8.1</td>
<td>Speckle Photography</td>
<td>275</td>
</tr>
<tr>
<td>8.1.1</td>
<td>In-Plane Displacement</td>
<td>277</td>
</tr>
<tr>
<td>8.1.2</td>
<td>Simulation</td>
<td>279</td>
</tr>
<tr>
<td>8.1.3</td>
<td>Properties of the Spectra (\mathcal{I}{k}(v{x},v_{y}))</td>
<td>281</td>
</tr>
<tr>
<td>8.1.4</td>
<td>Limitations on the Size of the Motion ((x_{0},y_{0}))</td>
<td>284</td>
</tr>
<tr>
<td>8.1.5</td>
<td>Analysis with Multiple Specklegram Windows</td>
<td>285</td>
</tr>
<tr>
<td>8.1.6</td>
<td>Object Rotation</td>
<td>286</td>
</tr>
<tr>
<td>8.2</td>
<td>Speckle Interferometry</td>
<td>287</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Systems That Use Photographic Detection</td>
<td>287</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Electronic Speckle Pattern Interferometry (ESPI)</td>
<td>291</td>
</tr>
<tr>
<td>8.2.3</td>
<td>Speckle Shearing Interferometry</td>
<td>294</td>
</tr>
<tr>
<td>8.3</td>
<td>From Fringe Patterns to Phase Maps</td>
<td>296</td>
</tr>
<tr>
<td>8.3.1</td>
<td>The Fourier Transform Method</td>
<td>297</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Phase-Shifting Speckle Interferometry</td>
<td>298</td>
</tr>
<tr>
<td>8.3.3</td>
<td>Phase Unwrapping</td>
<td>299</td>
</tr>
</tbody>
</table>
8.4 Vibration Measurement Using Speckle .. 301
8.5 Speckle and Surface Roughness Measurements 305
 8.5.1 RMS Surface Height and Surface Covariance Area from Speckle
 Contrast ... 305
 8.5.2 RMS Surface Height from Two-Wavelength Decorrelation 306
 8.5.3 RMS Surface Height from Two-Angle Decorrelation 307
 8.5.4 Information from Measurement of Angular Power Spectrum 308

9 Speckle in Imaging Through the Atmosphere 311
 9.1 Background ... 311
 9.1.1 Refractive Index Fluctuations in the Atmosphere 311
 9.2 Point-Spread Functions .. 313
 9.3 Average Optical Transfer Functions ... 315
 9.4 Statistical Properties of the Short-Exposure OTF and MTF 316
 9.5 Astronomical Speckle Interferometry 322
 9.5.1 Object Information that Is Retrievable 322
 9.5.2 Results of a More Complete Analysis 325
 9.6 The Cross-Spectrum or Knox–Thompson Technique 327
 9.6.1 The Cross-Spectrum Transfer Function 327
 9.6.2 Recovering Full Object Information from the Cross-Spectrum ... 329
 9.7 The Bispectrum Technique .. 331
 9.7.1 The Bispectrum Transfer Function 331
 9.7.2 Recovering Full Object Information from the Bispectrum 332
 9.8 Speckle Correlography ... 333

A Linear Transformations of Speckle Fields 337
B Contrast of Partially Developed Speckle ... 341
C Statistics of Derivatives of Speckle .. 345
 C.1 The Correlation Matrix .. 345
 C.2 Joint Density Function of the Derivatives of Phase 348
 C.3 Joint Density Function of the Derivatives of Intensity 349
D Wavelength and Angle Dependence ... 351
 D.1 Free-Space Geometry .. 351
 D.2 Imaging Geometry ... 355
E Speckle Contrast with a Projected Diffuser 359
 E.1 Random Phase Diffusers ... 359
 E.2 Diffuser that Just Fills the Projection Optics 362
 E.3 Diffuser that Overfills the Projection Optics 362