ORDINAL OPTIMIZATION

SOFT OPTIMIZATION FOR HARD PROBLEMS

Yu-Chi Ho
Harvard University
Massachusetts, USA
Tsinghua University
Beijing, China

Qian-Chuan Zhao
Tsinghua University
Beijing, China

Qing-Shan Jia
Tsinghua University
Beijing, China

Springer
Table of Contents

Preface
 ix

Acknowledgements
 xv

I Introduction
 1

II Ordinal Optimization Fundamentals
 7

1 Two basic ideas of Ordinal Optimization (OO)
 7

2 Definitions, terminologies, and concepts for OO
 9

3 A simple demonstration of OO
 13

4 The exponential convergence of order and goal softening
 15

4.1 Large deviation theory
 16

4.2 Exponential convergence w.r.t. order
 21

4.3 Proof of goal softening
 26

 4.3.1 Blind pick
 26

 4.3.2 Horse race
 28

5 Universal alignment probabilities
 37

 5.1 Blind pick selection rule
 38

 5.2 Horse race selection rule
 39

6 Deterministic complex optimization problem and Kolmogorov equivalence
 48

7 Example applications
 51

 7.1 Stochastic simulation models
 51

 7.2 Deterministic complex models
 53

8 Preview of remaining chapters
 54

III Comparison of Selection Rules
 57

1 Classification of selection rules
 60

2 Quantify the efficiency of selection rules
 69
Table of Contents

2. Parameter settings in experiments for regression functions
- 2.1 Parameter settings in experiments for regression functions - 73
- 2.2 Comparison of selection rules - 77

3. Examples of search reduction
- 3.1 Example: Picking with an approximate model - 80
- 3.2 Example: A buffer resource allocation problem - 84

4. Some properties of good selection rules
- 4 Some properties of good selection rules - 88

5. Conclusion
- 5 Conclusion - 90

IV Vector Ordinal Optimization
- 1 Definitions, terminologies, and concepts for VOO - 94
- 2 Universal alignment probability - 99
- 3 Exponential convergence w.r.t. order - 104
- 4 Examples of search reduction - 106
 - 4.1 Example: When the observation noise contains normal distribution - 106
 - 4.2 Example: The buffer allocation problem - 108

V Constrained Ordinal Optimization
- 1 Determination of selected set in COO - 115
 - 1.1 Blind pick with an imperfect feasibility model - 115
 - 1.2 Impact of the quality of the feasibility model on BPFM - 119
- 2 Example: Optimization with an imperfect feasibility model - 122
- 3 Conclusion - 124

VI Memory Limited Strategy Optimization
- 1 Motivation (the need to find good enough and simple strategies) - 126
- 2 Good enough simple strategy search based on OO - 128
 - 2.1 Building crude model - 128
 - 2.2 Random sampling in the design space of simple strategies - 133
- 3 Conclusion - 135

VII Additional Extensions of the OO Methodology
- 1 Extremely large design space - 138
- 2 Parallel implementation of OO - 143
 - 2.1 The concept of the standard clock - 144
Table of Contents

2.2 Extension to non-Markov cases using second order approximations--- 147
 2.2.1 Second order approximation--- 148
 2.2.2 Numerical testing--- 152
3 Effect of correlated observation noises--- 154
4 Optimal Computing Budget Allocation and Nested Partition-------------------------- 159
 4.1 OCBA--- 160
 4.2 NP--- 164
5 Performance order vs. performance value--- 168
6 Combination with other optimization algorithms---------------------------------- 175
 6.1 Using other algorithms as selection rules in OO---------------------------------- 177
 6.1.1 GA+OO--- 177
 6.1.2 SA+OO--- 183
 6.2 Simulation-based parameter optimization for algorithms---------------- 186
 6.3 Conclusion--- 188

VIII Real World Application Examples--- 189

1 Scheduling problem for apparel manufacturing---------------------------------- 190
 1.1 Motivation--- 191
 1.2 Problem formulation---------------------------------- 192
 1.2.1 Demand models--- 193
 1.2.2 Production facilities---------------------------------- 195
 1.2.3 Inventory dynamic---------------------------------- 196
 1.2.4 Summary--- 197
 1.3 Application of ordinal optimization---------------------------------- 198
 1.3.1 Random sampling of designs---------------------------------- 199
 1.3.2 Crude model---------------------------------- 200
 1.4 Experimental results---------------------------------- 202
 1.4.1 Experiment 1: 100 SKUs---------------------------------- 202
 1.4.2 Experiment 2: 100 SKUs with consideration on satisfaction rate---------------------------------- 204
 1.5 Conclusion--- 206
2 The turbine blade manufacturing process optimization problem---------------- 207
 2.1 Problem formulation---------------------------------- 208
 2.2 Application of OO---------------------------------- 213
 2.3 Conclusion---------------------------------- 219
3 Performance optimization for a remanufacturing system------------------ 220
 3.1 Problem formulation of constrained optimization---------------- 220
 3.2 Application of COO---------------------------------- 224
Table of Contents

Appendix D Exercises

1. True/False questions — 291
2. Multiple-choice questions — 293
3. General questions — 297

References — 305

Index — 315