APPLIED ELECTROMAGNETICS: EARLY TRANSMISSION LINES APPROACH

STUART M. WENTWORTH
Auburn University
CONTENTS

CHAPTER 1

Introduction 1

1.1 Electromagnetic Fields 2
 - Electric Fields 3
 - Magnetic Fields 4
 - Field Linkage 4

1.2 The Electromagnetic Spectrum 5

1.3 Wireless Communications 6

1.4 Dealing with Units 8

1.5 Working with MATLAB
 - MATLAB Programs 10

1.6 Wave Fundamentals 19

1.7 Phasors 26

Summary 29

Problems 29

CHAPTER 2

Transmission Lines 31

2.1 Distributed-Parameter Model 32
 - Coaxial Cable 34
 - Telegraphist's Equations 37

2.2 Time-Harmonic Waves on Transmission Lines 39
 - Characteristic Impedance 42
 - Lossless Line 43

2.3 Power Transmission 45

2.4 Terminated T-Lines 48
 - Voltage Standing Wave Ratio 50
 - Input Impedance 51
 - Complex Loads 53
 - Special Terminations 54

2.5 The Complete Circuit 55

2.6 The Smith Chart 62
 - Smith Chart Derivation 62
 - Using the Smith Chart 69
 - Impedance Measurement 73

2.7 Impedance Matching 76
 - Quarter-Wave Transformer 78
 - Matching with the Smith Chart 79
 - Admittance of Shunt Stubs 81
 - Shunt Stub Matching 84

2.8 Transients 87
 - Pulse Response 91
 - Practical Application: Schottky-Diode Terminations 95
 - Reactive Loads 96
 - Time-Domain Reflectometry 99

2.9 Dispersion 101

Summary 107

Problems 108

CHAPTER 3

Electrostatics 114

3.1 Vectors in the Cartesian Coordinate System 115

3.2 Coulomb's Law 122
 - Electric Field Intensity 124
 - Field Lines 125

3.3 The Spherical Coordinate System 126

3.4 Line Charges and the Cylindrical Coordinate System
 - Infinite Length Line of Charge 133
 - Ring of Charge 138

3.5 Surface and Volume Charge 139
 - Volume Charge 145
 - Practical Application: Laser Printer 148

3.6 Electric Flux Density 149

3.7 Gauss's Law and Applications 153
 - Coaxial Cable 157

3.8 Divergence and the Point Form of Gauss's Law 161

3.9 Electric Potential 166
 - Gradient 171

3.10 Conductors and Ohm's Law 176
 - Current and Current Density 178
 - Joule's Law 181

3.11 Dielectrics 182
 - Practical Application: Electret Microphone 185

3.12 Boundary Conditions 186

3.13 Boundary Value Problems 190
CONTENTS

3.14 Capacitance 194
 Electrostatic Potential Energy 198
Practical Application: Electrolytic Capacitors 199
Summary 200
Problems 202

CHAPTER 4
Magnetostatics 208
4.1 Magnetic Fields and Cross Product 209
 Oersted’s Experiment 214
4.2 Biot-Savart’s Law 214
 Solenoid 221
 Surface and Volume Current Densities 222
4.3 Ampère’s Circuital Law 224
4.4 Curl and the Point Form of Ampère’s Circuital Law 234
 Stoke’s Theorem 236
4.5 Magnetic Flux Density 237
4.6 Magnetic Forces 240
 Force on a Current Element 241
 Magnetic Torque and Moment 246
Practical Application: Loudspeakers 250
4.7 Magnetic Materials 251
4.8 Boundary Conditions 251
4.9 Inductance and Magnetic Energy 261
 Mutual Inductance 264
 Magnetic Energy 266
4.10 Magnetic Circuits 269
 Electromagnets 273
Practical Application: Maglev 276
Summary 278
Problems 280

CHAPTER 5
Dynamic Fields 286
5.1 Current Continuity and Relaxation Time 286
5.2 Faraday’s Law and Transformer EMF 288
 Transformer EMF 290
 Transformers 293
 Point Form of Faraday’s Law 295
5.3 Faraday’s Law and Motional EMF 296
 Generators 299
5.4 Displacement Current 301
5.5 Maxwell’s Equations 305
5.6 Lossless TEM Waves 306
5.7 Time-Harmonic Fields and Phasors 312
Summary 315
Problems 316

CHAPTER 6
Plane Waves 320
6.1 General Wave Equations 321
 Time-Harmonic Wave Equations 322
 Propagating Fields Relation 327
6.2 Propagation in Lossless, Charge-Free Media 328
6.3 Propagation in Dielectrics 330
 Low-Loss Dielectrics 332
 Loss Tangent 333
6.4 Propagation in Conductors 335
 Current in Conductors 337
6.5 The Poynting Theorem and Power Transmission 342
 UPW Power Transmission 344
6.6 Polarization 347
 Practical Application: Liquid Crystal Displays 352
6.7 Reflection and Transmission at Normal Incidence 353
 General Case 353
 Standing Waves 358
6.8 Reflection and Transmission at Oblique Incidence 359
 TE Polarization 360
 TM Polarization 366
Summary 368
Problems 370

CHAPTER 7
Waveguides 373
7.1 Rectangular Waveguide Fundamentals 374
 Wave Propagation 377
 Waveguide Impedance 381
 Practical Application: Microwave Ovens 384
7.2 Waveguide Field Equations 385
 TM Mode 388
 TE Mode 394
7.3 Dielectric Waveguide 398
 TE Mode 401
 TM Mode 403
 Field Equations 404
7.4 Optical Fiber 407
 Numerical Aperture 410
 Signal Degradation 411
 Attenuation 412
 Graded-Index Fiber 413
CONTENTS

10.6 Amplifiers 592
 Designing Matching Networks 596
 Balanced Amplifiers 600

10.7 Receiver Design 602
 Oscillators 602
 Mixers 603
 Microwave CAD 605
 Practical Application: Radio Frequency Identification 606

Summary 607
Suggested References 608
Problems 609

APPENDIX A
Vector Relations 614

APPENDIX B
Coordinate System Transformations 617

APPENDIX C
Complex Numbers 621

APPENDIX D
Integrals, Conversions, and Constants 623

APPENDIX E
Material Properties 625

APPENDIX F
Common MATLAB Math Functions 627

APPENDIX G
Answers to Selected Problems 628

INDEX 650