Contents

Preface xi

CHAPTER 1 Introduction to Body-Centric Wireless Communications 1
1.1 What Are Body-Centric Communications Systems? 1
1.2 Off-Body to On-Body Communications 5
1.3 On-Body Communications 5
1.4 Medical Implants and Sensor Networks 6
1.5 Layout of the Book 7
References 8

CHAPTER 2 Electromagnetic Properties and Modeling of the Human Body 11
2.1 Electromagnetic Characteristics of Human Tissues 11
2.2 Physical Body Phantoms 12
 2.2.1 Liquid Phantoms 14
 2.2.2 Semisolid (Gel) or Solid (Wet) Phantoms 17
 2.2.3 Solid (Dry) Phantoms 17
 2.2.4 Examples of Physical Phantoms 18
2.3 Numerical Phantoms 20
 2.3.1 Theoretical Phantoms 21
 2.3.2 Voxel Phantoms 21
2.4 Numerical Modeling Techniques for Body-Centric Wireless Communications 22
 2.4.1 Introduction of Numerical Techniques 22
 2.4.2 On-Body Radio Channel Modeling 27
References 34

CHAPTER 3 Antennas and Propagation for On-Body Communication at Microwave Frequencies 39
3.1 Introduction 39
3.2 On-Body Channel Measurement and Modeling 41
3.3 Antenna Design 51
 3.3.1 Comparison of Antenna Types 52
 3.3.2 Antenna Match and Efficiency 52
3.4 Simulation and Modeling 56
Contents

3.5 Systems Modeling 60
3.6 Conclusions 62
Acknowledgments 63
References 63

CHAPTER 4
Transmission Mechanism of Wearable Devices Using the Human Body as a Transmission Channel 65

4.1 Introduction to Communications Using Circuits in Direct Contact with the Human Body 65
4.2 Numerical Analysis and Equivalent Circuit Models 68
4.2.1 Whole Body Models 68
4.2.2 Arm Models 70
4.2.3 Effective Electrode Structure 73
4.2.4 Equivalent Circuit Models 74
4.3 Experiments Using Human Phantom 76
4.3.1 Measurement of the Signal Distributions 76
4.3.2 Comparison Between Measurement and Calculation 78
4.3.3 Electric Field Distributions in and Around the Arm 82
4.3.4 Received Signal Voltage of the Receiver 83
4.4 Investigation of the Dominant Signal Transmission Path 86
4.4.1 Calculation Model 86
4.4.2 Electric Field Distributions and Received Signal Voltages 87
4.5 Conclusions 89
References 91

CHAPTER 5
Body-Centric UWB Communications 93

5.1 Overview 93
5.2 Antennas 94
5.2.1 Design and Analysis 94
5.2.2 Measurements 109
5.2.3 Concluding Remarks 111
5.3 Channel Simulation and Measurement Methodology 111
5.3.1 Simulation of the Radio Propagation in Body-Centric Communication Scenarios 111
5.3.2 Measurement of the Radio Propagation in Body-Centric Communication Scenarios 112
5.3.3 Concluding Remarks 120
5.4 Channel Characterization and Modeling 121
5.4.1 General Aspects 122
5.4.2 Personal Area Network Scenarios 124
5.4.3 Body Area Network Scenarios 129
5.4.4 Concluding Remarks 144
References 147
CHAPTER 6
Wearable Antennas: Advances in Design, Characterization, and Application 151
6.1 Background 151
6.2 Wearable Antennas: Critical Design Issues 153
6.3 Textile Materials 155
6.4 Effects of Substrate Materials: An Example of the Fabric GPS Antenna 156
6.4.1 Effects of Ground Plane Size Attached to the Fabric Substrate on GPS Antenna Performance 159
6.5 Effect of Various Conductive Materials of Patch Antennas: An Example of WLAN Antenna on Fleece Fabric 162
6.6 Dual Frequency Wearable Antenna Design: An Example of a U-Slot Patch 166
6.6.1 Experimental Results and Discussions: Fleece and Vellux Fabrics 169
6.7 Wearable Electromagnetic Bandgap Antenna: An Example of WLAN Antenna 171
6.7.1 Remarks on Antenna Bending 176
6.8 Wearable Antennas Near the Human Body: An Example of a WLAN Antenna 180
6.8.1 Models and Methods 180
6.8.2 Results 181
6.9 Conclusions 184
Acknowledgments 186
References 186

CHAPTER 7
Body-Sensor Networks for Space and Military Applications 189
7.1 Introduction 189
7.2 Biosensor System and Basics of Biomedical RF Telemetry 190
7.2.1 Implantable Pressure Sensor 192
7.2.2 Integrated Inductor/Antenna 192
7.2.3 External Pickup Antenna 194
7.3 Antenna Design for Body Sensors 194
7.3.1 Implantable Antennas 194
7.3.2 Antennas for External Handheld Devices 203
7.4 Space, Military, and Civilian Applications 206
7.4.1 Sensors for Space Environment 206
7.4.2 Battlefield Sensors 207
7.4.3 Sensors in Hospitals and Smart Homes 207
References 208

CHAPTER 8
Antennas and Propagation for Telemedicine and Telecare: On-Body Systems 211
8.1 Telemedicine and Telecare Applications 211
8.1.1 Physiological Signals for Patient Monitoring 213
8.1.2 Technologies for Ward-Based Systems 213
10.2.3 Medical Implant Systems 276
10.2.4 Characterization of Time-Domain Systems 277
References 277

About the Authors 279
Index 289