Brief Contents

I Introductory Material 1
1 Learning, Regularity, and Compression 3
2 Probabilistic and Statistical Preliminaries 41
3 Information-Theoretic Preliminaries 79
4 Information-Theoretic Properties of Statistical Models 109
5 Crude Two-Part Code MDL 131

II Universal Coding 165
6 Universal Coding with Countable Models 171
7 Parametric Models: Normalized Maximum Likelihood 207
8 Parametric Models: Bayes 231
9 Parametric Models: Prequential Plug-in 257
10 Parametric Models: Two-Part 271
11 NML With Infinite Complexity 295
12 Linear Regression 335
13 Beyond Parametrics 369

III Refined MDL 403
14 MDL Model Selection 409
15 MDL Prediction and Estimation 459
16 MDL Consistency and Convergence 501
17 MDL in Context 523
IV Additional Background 597
18 The Exponential or “Maximum Entropy” Families 599
19 Information-Theoretic Properties of Exponential Families 623
Contents

List of Figures xix
Series Foreword xxi
Foreword xxiii
Preface xxv

I Introductory Material 1

1 Learning, Regularity, and Compression 3
 1.1 Regularity and Learning 4
 1.2 Regularity and Compression 4
 1.3 Solomonoff’s Breakthrough – Kolmogorov Complexity 8
 1.4 Making the Idea Applicable 10
 1.5 Crude MDL, Refined MDL and Universal Coding 12
 1.5.1 From Crude to Refined MDL 14
 1.5.2 Universal Coding and Refined MDL 17
 1.5.3 Refined MDL for Model Selection 18
 1.5.4 Refined MDL for Prediction and Hypothesis Selection 20
 1.6 Some Remarks on Model Selection 23
 1.6.1 Model Selection among Non-Nested Models 23
 1.6.2 Goals of Model vs. Point Hypothesis Selection 25
 1.7 The MDL Philosophy 26
 1.8 MDL, Occam’s Razor, and the “True Model” 29
 1.8.1 Answer to Criticism No. 1 30
1.8.2 Answer to Criticism No. 2 32
1.9 History and Forms of MDL 36
1.9.1 What Is MDL? 37
1.9.2 MDL Literature 38
1.10 Summary and Outlook 40

2 Probabilistic and Statistical Preliminaries 41
2.1 General Mathematical Preliminaries 41
2.2 Probabilistic Preliminaries 46
 2.2.1 Definitions; Notational Conventions 46
 2.2.2 Probabilistic Sources 53
 2.2.3 Limit Theorems and Statements 55
 2.2.4 Probabilistic Models 57
 2.2.5 Probabilistic Model Classes 60
2.3 Kinds of Probabilistic Models* 62
2.4 Terminological Preliminaries 69
2.5 Modeling Preliminaries:
 Goals and Methods for Inductive Inference 71
 2.5.1 Consistency 71
 2.5.2 Basic Concepts of Bayesian Statistics 74
2.6 Summary and Outlook 78

3 Information-Theoretic Preliminaries 79
3.1 Coding Preliminaries 79
 3.1.1 Restriction to Prefix Coding Systems;
 Descriptions as Messages 83
 3.1.2 Different Kinds of Codes 86
 3.1.3 Assessing the Efficiency of Description Methods 90
3.2 The Most Important Section of This Book:
 Probabilities and Code Lengths 90
 3.2.1 The Kraft Inequality 91
 3.2.2 Code Lengths “Are” Probabilities 95
 3.2.3 Immediate Insights and Consequences 99
3.3 Probabilities and Code Lengths, Part II 101
 3.3.1 (Relative) Entropy and the Information Inequality 103
 3.3.2 Uniform Codes, Maximum Entropy, and Minimax
 Codelength 106
3.4 Summary, Outlook, Further Reading 106
4 Information-Theoretic Properties of Statistical Models 109
 4.1 Introduction 109
 4.2 Likelihood and Observed Fisher Information 111
 4.3 KL Divergence and Expected Fisher Information 117
 4.4 Maximum Likelihood: Data vs. Parameters 124
 4.5 Summary and Outlook 130

5 Crude Two-Part Code MDL 131
 5.1 Introduction: Making Two-Part MDL Precise 132
 5.2 Two-Part Code MDL for Markov Chain Selection 133
 5.2.1 The Code C_2 135
 5.2.2 The Code C_1 137
 5.2.3 Crude Two-Part Code MDL for Markov Chains 138
 5.3 Simplistic Two-Part Code MDL Hypothesis Selection 139
 5.4 Two-Part MDL for Tasks Other Than Hypothesis Selection 141
 5.5 Behavior of Two-Part Code MDL 142
 5.6 Two-Part Code MDL and Maximum Likelihood 144
 5.6.1 The Maximum Likelihood Principle 144
 5.6.2 MDL vs. ML 147
 5.6.3 MDL as a Maximum Probability Principle 148
 5.7 Computing and Approximating Two-Part MDL in Practice 150
 5.8 Justifying Crude MDL: Consistency and Code Design 152
 5.8.1 A General Consistency Result 153
 5.8.2 Code Design for Two-Part Code MDL 157
 5.9 Summary and Outlook 163
 5.A Appendix: Proof of Theorem 5.1 163

II Universal Coding 165

6 Universal Coding with Countable Models 171
 6.1 Universal Coding: The Basic Idea 172
 6.1.1 Two-Part Codes as Simple Universal Codes 174
 6.1.2 From Universal Codes to Universal Models 175
 6.1.3 Formal Definition of Universality 177
 6.2 The Finite Case 178
 6.2.1 Minimax Regret and Normalized ML 179
 6.2.2 NML vs. Two-Part vs. Bayes 182
 6.3 The Countably Infinite Case 184
6.3.1 The Two-Part and Bayesian Codes 184
6.3.2 The NML Code 187
6.4 Prequential Universal Models 190
6.4.1 Distributions as Prediction Strategies 190
6.4.2 Bayes Is Prequential; NML and Two-part Are Not 193
6.4.3 The Prequential Plug-In Model 197
6.5 Individual vs. Stochastic Universality* 199
6.5.1 Stochastic Redundancy 199
6.5.2 Uniformly Universal Models 201
6.6 Summary, Outlook and Further Reading 204

7 Parametric Models: Normalized Maximum Likelihood 207
7.1 Introduction 207
7.1.1 Preliminaries 208
7.2 Asymptotic Expansion of Parametric Complexity 211
7.3 The Meaning of $\int_{\Theta} \sqrt{\det J(\theta)} d\theta$ 216
7.3.1 Complexity and Functional Form 217
7.3.2 KL Divergence and Distinguishability 219
7.3.3 Complexity and Volume 222
7.3.4 Complexity and the Number of Distinguishable Distributions* 224
7.4 Explicit and Simplified Computations 226

8 Parametric Models: Bayes 231
8.1 The Bayesian Regret 231
8.1.1 Basic Interpretation of Theorem 8.1 233
8.2 Bayes Meets Minimax – Jeffreys’ Prior 234
8.2.1 Jeffreys’ Prior and the Boundary 237
8.3 How to Prove the Bayesian and NML Regret Theorems 239
8.3.1 Proof Sketch of Theorem 8.1 239
8.3.2 Beyond Exponential Families 241
8.3.3 Proof Sketch of Theorem 7.1 243
8.4 Stochastic Universality* 244
8.A Appendix: Proofs of Theorem 8.1 and Theorem 8.2 248

9 Parametric Models: Prequential Plug-in 257
9.1 Prequential Plug-in for Exponential Families 257
9.2 The Plug-in vs. the Bayes Universal Model 262
9.3 More Precise Asymptotics 265
12.3.2 Bayesian Linear Models M^X and S^X with Noninformative Priors

359

12.4 Universal Models for Linear Regression

363

12.4.1 NML 363

12.4.2 Bayes and LNML 364

12.4.3 Bayes-Jeffreys and CNML 365

13 Beyond Parametrics

369

13.1 Introduction 370

13.2 CUP: Unions of Parametric Models 372

13.2.1 CUP vs. Parametric Models 375

13.3 Universal Codes Based on Histograms 376

13.3.1 Redundancy of Universal CUP Histogram Codes 380

13.4 Nonparametric Redundancy 383

13.4.1 Standard CUP Universal Codes 384

13.4.2 Minimax Nonparametric Redundancy 387

13.5 Gaussian Process Regression* 390

13.5.1 Kernelization of Bayesian Linear Regression 390

13.5.2 Gaussian Processes 394

13.5.3 Gaussian Processes as Universal Models 396

13.6 Conclusion and Further Reading 402

III Refined MDL

403

14 MDL Model Selection

409

14.1 Introduction 409

14.2 Simple Refined MDL Model Selection 411

14.2.1 Compression Interpretation 415

14.2.2 Counting Interpretation 416

14.2.3 Bayesian Interpretation 418

14.2.4 Prequential Interpretation 419

14.3 General Parametric Model Selection 420

14.3.1 Models with Infinite Complexities 420

14.3.2 Comparing Many or Infinitely Many Models 422

14.3.3 The General Picture 425

14.4 Practical Issues in MDL Model Selection 428

14.4.1 Calculating Universal Codelengths 428
14.4.2 Computational Efficiency and Practical Quality of Non-NML Universal Codes 429
14.4.3 Model Selection with Conditional NML and Plug-in Codes 431
14.4.4 General Warnings about Model Selection 435
14.5 MDL Model Selection for Linear Regression 438
 14.5.1 Rissanen’s RNML Approach 439
 14.5.2 Hansen and Yu’s gMDL Approach 443
 14.5.3 Liang and Barron’s Approach 446
 14.5.4 Discussion 448
14.6 Worst Case vs. Average Case* 451

15 MDL Prediction and Estimation 459
 15.1 Introduction 459
 15.2 MDL for Prediction and Predictive Estimation 460
 15.2.1 Prequential MDL Estimators 461
 15.2.2 Prequential MDL Estimators Are Consistent 465
 15.2.3 Parametric and Nonparametric Examples 469
 15.2.4 Césaro KL consistency vs. KL consistency* 472
 15.3 Two-Part Code MDL for Point Hypothesis Selection 476
 15.3.1 Discussion of Two-Part Consistency Theorem 478
 15.4 MDL Parameter Estimation 483
 15.4.1 MDL Estimators vs. Luckness ML Estimators 487
 15.4.2 What Estimator To Use? 491
 15.4.3 Comparison to Bayesian Estimators* 493
 15.5 Summary and Outlook 498
 15.A Appendix: Proof of Theorem 15.3 499

16 MDL Consistency and Convergence 501
 16.1 Introduction 501
 16.1.1 The Scenarios Considered 501
 16.2 Consistency: Prequential and Two-Part MDL Estimators 502
 16.3 Consistency: MDL Model Selection 505
 16.3.1 Selection between a Union of Parametric Models 505
 16.3.2 Nonparametric Model Selection Based on CUP Model Class 508
 16.4 MDL Consistency Peculiarities 511
 16.5 Risks and Rates 515
Contents

16.5.1 Relations between Divergences and Risk Measures 517
16.5.2 Minimax Rates 519

16.6 MDL Rates of Convergence 520
16.6.1 Prequential and Two-Part MDL Estimators 520
16.6.2 MDL Model Selection 522

17 MDL in Context 523
17.1 MDL and Frequentist Paradigms 524
17.1.1 Sanity Check or Design Principle? 525
17.1.2 The Weak Prequential Principle 528
17.1.3 MDL vs. Frequentist Principles: Remaining Issues 529
17.2 MDL and Bayesian Inference 531
17.2.1 Luckiness Functions vs. Prior Distributions 534
17.2.2 MDL, Bayes, and Occam 539
17.2.3 MDL and Brands of Bayesian Statistics 544
17.2.4 Conclusion: a Common Future after All? 548
17.3 MDL, AIC and BIC 549
17.3.1 BIC 549
17.3.2 AIC 550
17.3.3 Combining the Best of AIC and BIC 552
17.4 MDL and MML 555
17.4.1 Strict Minimum Message Length 556
17.4.2 Comparison to MDL 558
17.4.3 The Wallace-Freeman Estimator 560
17.5 MDL and Prequential Analysis 562
17.6 MDL and Cross-Validation 565
17.7 MDL and Maximum Entropy 567
17.8 Kolmogorov Complexity and Structure Function 570
17.9 MDL and Individual Sequence Prediction 573
17.10 MDL and Statistical Learning Theory 579
17.10.1 Structural Risk Minimization 581
17.10.2 PAC-Bayesian Approaches 585
17.10.3 PAC-Bayes and MDL 588
17.11 The Road Ahead 592

IV Additional Background 597

18 The Exponential or “Maximum Entropy” Families 599
Contents

18.1 Introduction 600
18.2 Definition and Overview 601
18.3 Basic Properties 605
18.4 Mean-Value, Canonical, and Other Parameterizations 609
 18.4.1 The Mean Value Parameterization 609
 18.4.2 Other Parameterizations 611
 18.4.3 Relating Mean-Value and Canonical Parameters** 613
18.5 Exponential Families of General Probabilistic Sources* 617
18.6 Fisher Information Definitions and Characterizations* 619

19 Information-Theoretic Properties of Exponential Families 623
19.1 Introduction 624
19.2 Robustness of Exponential Family Codes 624
 19.2.1 If θ_{\text{mean}} Does Not Contain the Mean** 627
19.3 Behavior at the ML Estimate $\hat{\beta}$ 629
19.4 Behavior of the ML Estimate $\hat{\beta}$ 632
 19.4.1 Central Limit Theorem 633
 19.4.2 Large Deviations 634
19.5 Maximum Entropy and Minimax Codelength 637
 19.5.1 Exponential Families and Maximum Entropy 638
 19.5.2 Exponential Families and Minimax Codelength 641
 19.5.3 The Compression Game 643
19.6 Likelihood Ratio Families and Rényi Divergences* 645
 19.6.1 The Likelihood Ratio Family 647
19.7 Summary 650

References 651

List of Symbols 675

Subject Index 679