ACTUARIAL MODELS
The Mathematics of Insurance

Vladimir I. Rotar
Contents

Preface ... xv
Acknowledgments xxi
Introduction 1

CHAPTER 0. Some Preliminary Notions and Facts from Probability Theory, the Theory of Interest, and Calculus

1 PROBABILITY AND RANDOM VARIABLES ... 7
 1.1 Sample space, events, probability measure ... 7
 1.2 Independence and conditional probabilities ... 9
 1.3 Random variables, random vectors, and their distributions 10
 1.3.1 Random variables .. 10
 1.3.2 Random vectors .. 11
 1.3.3 Cumulative distribution functions ... 14
 1.3.4 Quantiles ... 17
 1.3.5 Mixtures of distributions .. 17

2 EXPECTATION .. 18
 2.1 Definitions ... 18
 2.2 Integration by parts and a formula for expectation ... 21
 2.3 A general definition of expectation ... 22
 2.4 Can we encounter an infinite expected value in models of real phenomena? 23
 2.5 Moments of r.v.'s. Correlation ... 24
 2.5.1 Variance and other moments .. 24
 2.5.2 The Cauchy-Schwarz inequality ... 25
 2.5.3 Covariance and correlation .. 25
 2.6 Inequalities for deviations .. 27
 2.7 Linear transformations of r.v.'s. Normalization ... 28

3 SOME BASIC DISTRIBUTIONS 29
 3.1 Discrete distributions ... 29
 3.1.1 The binomial distribution ... 29
 3.1.2 The multinomial distribution .. 30
 3.1.3 The geometric distribution ... 30
 3.1.4 The negative binomial distribution .. 31
 3.1.5 The Poisson distribution .. 32
 3.2 Continuous distributions .. 33
 3.2.1 The uniform distribution and simulation of r.v.'s 33

\[1\] The significance of the signs in the margins is clarified in the Preface and the Introduction.
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.2</td>
<td>The exponential distribution</td>
<td>35</td>
</tr>
<tr>
<td>3.2.3</td>
<td>The Γ-distribution</td>
<td>36</td>
</tr>
<tr>
<td>3.2.4</td>
<td>The normal distribution</td>
<td>37</td>
</tr>
<tr>
<td>4</td>
<td>MOMENT GENERATING FUNCTIONS</td>
<td>38</td>
</tr>
<tr>
<td>4.1</td>
<td>Laplace transform</td>
<td>38</td>
</tr>
<tr>
<td>4.2</td>
<td>An example when a m.g.f. does not exist</td>
<td>41</td>
</tr>
<tr>
<td>4.3</td>
<td>The m.g.f.'s of basic distributions</td>
<td>41</td>
</tr>
<tr>
<td>4.3.1</td>
<td>The binomial distribution</td>
<td>42</td>
</tr>
<tr>
<td>4.3.2</td>
<td>The geometric and negative binomial distributions</td>
<td>43</td>
</tr>
<tr>
<td>4.3.3</td>
<td>The Poisson distribution</td>
<td>43</td>
</tr>
<tr>
<td>4.3.4</td>
<td>The uniform distribution</td>
<td>43</td>
</tr>
<tr>
<td>4.3.5</td>
<td>The exponential and gamma distributions</td>
<td>44</td>
</tr>
<tr>
<td>4.3.6</td>
<td>The normal distribution</td>
<td>44</td>
</tr>
<tr>
<td>4.4</td>
<td>The moment generating function and moments</td>
<td>44</td>
</tr>
<tr>
<td>4.5</td>
<td>Expansions for m.g.f.'s</td>
<td>46</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Taylor's expansions for m.g.f.'s</td>
<td>46</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Cumulants</td>
<td>46</td>
</tr>
<tr>
<td>5</td>
<td>CONVERGENCE OF RANDOM VARIABLES AND DISTRIBUTIONS</td>
<td>47</td>
</tr>
<tr>
<td>6</td>
<td>SOME FACTS AND FORMULAS FROM THE THEORY OF INTEREST</td>
<td>50</td>
</tr>
<tr>
<td>6.1</td>
<td>Compound interest</td>
<td>50</td>
</tr>
<tr>
<td>6.2</td>
<td>Nominal rate</td>
<td>53</td>
</tr>
<tr>
<td>6.3</td>
<td>Discount and annuities</td>
<td>54</td>
</tr>
<tr>
<td>6.4</td>
<td>Accumulated value</td>
<td>56</td>
</tr>
<tr>
<td>6.5</td>
<td>Effective and nominal discount rates</td>
<td>56</td>
</tr>
<tr>
<td>7</td>
<td>APPENDIX. SOME NOTATIONS AND FACTS FROM CALCULUS</td>
<td>57</td>
</tr>
<tr>
<td>7.1</td>
<td>The “small o and big O” notation</td>
<td>57</td>
</tr>
<tr>
<td>7.1.1</td>
<td>Small o</td>
<td>57</td>
</tr>
<tr>
<td>7.1.2</td>
<td>Big O</td>
<td>59</td>
</tr>
<tr>
<td>7.2</td>
<td>Taylor expansions</td>
<td>59</td>
</tr>
<tr>
<td>7.2.1</td>
<td>A general expansion</td>
<td>59</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Some particular expansions</td>
<td>60</td>
</tr>
<tr>
<td>7.3</td>
<td>Concavity</td>
<td>61</td>
</tr>
<tr>
<td>1</td>
<td>COMPARISON OF RANDOM VARIABLES. SOME PARTICULAR CRITERIA</td>
<td>63</td>
</tr>
<tr>
<td>1.1</td>
<td>Preference order</td>
<td>63</td>
</tr>
<tr>
<td>1.2</td>
<td>Several simple criteria</td>
<td>66</td>
</tr>
<tr>
<td>1.2.1</td>
<td>The mean-value criterion</td>
<td>66</td>
</tr>
<tr>
<td>1.2.2</td>
<td>Value-at-Risk (VaR)</td>
<td>66</td>
</tr>
<tr>
<td>1.2.3</td>
<td>An important remark: risk measures rather than criteria</td>
<td>69</td>
</tr>
<tr>
<td>1.2.4</td>
<td>Tail conditional expectation (TCE) or Tail-Value-at-Risk (TailVaR)</td>
<td>69</td>
</tr>
<tr>
<td>1.2.5</td>
<td>The mean-variance criterion</td>
<td>73</td>
</tr>
<tr>
<td>1.3</td>
<td>On coherent measures of risk</td>
<td>76</td>
</tr>
</tbody>
</table>
Contents

2 COMPARISON OF R.V.'S AND LIMIT THEOREMS OF PROBABILITY THEORY ... 79

2.1 A diversion to Probability Theory: two limit theorems ... 80
 2.1.1 The Law of Large Numbers (LLN) ... 80
 2.1.2 The Central Limit Theorem (CLT) ... 80

2.2 A simple model of insurance with many clients ... 81

2.3 St. Petersburg's paradox ... 83

3 EXPECTED UTILITY ... 84

3.1 Expected utility maximization (EUM) .. 84
 3.1.1 Utility function .. 84
 3.1.2 Expected utility maximization (EUM) criterion .. 85
 3.1.3 Some "classical" examples of utility functions .. 88

3.2 Utility and insurance ... 91

3.3 How we may determine the utility function in particular cases .. 93

3.4 Risk aversion .. 94
 3.4.1 A definition .. 94
 3.4.2 Jensen's inequality ... 95
 3.4.3 How to measure risk aversion in the EUM case ... 96
 3.4.4 Proofs ... 98

3.5 A new perspective: EUM as a linear criterion ... 100
 3.5.1 Preferences on distributions .. 100
 3.5.2 The first stochastic dominance .. 101
 3.5.3 The second stochastic dominance .. 103
 3.5.4 The EUM criterion .. 104
 3.5.5 Linearity of the utility functional .. 105
 3.5.6 An axiomatic approach ... 108

4 NON-LINEAR CRITERIA ... 111

4.1 Allais' paradox ... 111

4.2 Weighted utility ... 112

4.3 Implicit or comparative utility .. 114
 4.3.1 Definitions and examples ... 114
 4.3.2 In what sense the implicit utility criterion is linear 117

4.4 Rank Dependent Expected Utility .. 118
 4.4.1 Definitions and examples ... 118
 4.4.2 Application to insurance ... 121
 4.4.3 Further discussion and the main axiom .. 122

4.5 Remarks .. 124

5 OPTIMAL PAYMENT FROM THE STANDPOINT OF THE INSURED ... 125

5.1 Arrow's theorem .. 125

5.2 A generalization ... 128

6 EXERCISES .. 129
CHAPTER 2. An individual Risk Model for a Short Period

1 THE DISTRIBUTION OF AN INDIVIDUAL PAYMENT
1.1 The distribution of the loss given that it has occurred
1.1.1 Definitions. Characterization of tails
1.1.2 Some particular light-tailed distributions
1.1.3 Some particular heavy-tailed distributions
1.1.4 The asymptotic behavior of tails and moments
1.2 The distribution of the loss X
1.3 The distribution of the payment and types of insurance

2 THE AGGREGATE PAYMENT
2.1 Convolutions
2.1.1 Definitions and examples
2.1.2 Some classical examples
2.1.3 The analogue of the binomial formula for convolutions
2.2 Moment generating functions

3 NORMAL AND OTHER APPROXIMATIONS
3.1 Normal approximation
3.1.1 A heuristic approach
3.1.2 An important remark: the standard deviation principle
3.1.3 A rigorous estimation
3.1.4 The number of contracts needed to maintain a given security level
3.2 How to take into account the asymmetry of X. The Γ-approximation
3.3 Asymptotic expansions and Normal Power (NP) approximation

4 EXERCISES

CHAPTER 3. Conditional Expectations

1 HOW TO COMPUTE CONDITIONAL EXPECTATIONS.
THE CONDITIONING PROCEDURE
1.1 Conditional expectation given a r.v.
1.1.1 The discrete case
1.1.2 The case of continuous distributions
1.2 Properties of conditional expectations
1.3 Conditioning and some useful formulas
1.3.1 A formula for variance
1.3.2 More detailed representations of the formula for total expectation
1.4 Conditional expectation given a r.vec.
1.4.1 General definitions
1.4.2 On the case of an infinite-dimensional X
1.4.3 On conditioning in the multi-dimensional case

2 FORMULA FOR TOTAL EXPECTATION AND CONDITIONAL EXPECTATION GIVEN A PARTITION
2.1 Conditional expectation given an event
2.2 The formula for total expectation
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3 Expectation given a partition</td>
<td>208</td>
</tr>
<tr>
<td>3 CONDITONAL EXPECTATIONS GIVEN RANDOM VARIABLES OR VECTORS</td>
<td>209</td>
</tr>
<tr>
<td>3.1 The discrete case</td>
<td>209</td>
</tr>
<tr>
<td>3.2 The general case</td>
<td>211</td>
</tr>
<tr>
<td>4 ONE MORE IMPORTANT PROPERTY OF CONDITIONAL EXPECTATIONS</td>
<td>213</td>
</tr>
<tr>
<td>4.1 Conditioning on partitions</td>
<td>213</td>
</tr>
<tr>
<td>4.2 Conditioning on r.v.'s or r.vec.'s</td>
<td>214</td>
</tr>
<tr>
<td>5 A GENERAL APPROACH TO CONDITIONAL EXPECTATIONS</td>
<td>215</td>
</tr>
<tr>
<td>5.1 Conditional expectation relative to a σ-algebra</td>
<td>215</td>
</tr>
<tr>
<td>5.2 Conditional expectation given a r.v. or a r.vec.</td>
<td>218</td>
</tr>
<tr>
<td>5.3 Properties of conditional expectations</td>
<td>219</td>
</tr>
<tr>
<td>6 SOME PROOFS</td>
<td>220</td>
</tr>
<tr>
<td>6.1 Proofs of the properties stated in Section 1.2</td>
<td>220</td>
</tr>
<tr>
<td>6.2 Proof of Proposition 2</td>
<td>222</td>
</tr>
<tr>
<td>7 EXERCISES</td>
<td>222</td>
</tr>
</tbody>
</table>

CHAPTER 4. A Collective Risk Model for a Short Period

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 THREE BASIC PROPOSITIONS</td>
<td>225</td>
</tr>
<tr>
<td>2 COUNTING OR FREQUENCY DISTRIBUTIONS</td>
<td>227</td>
</tr>
<tr>
<td>2.1 The Poisson distribution and Poisson's theorem</td>
<td>227</td>
</tr>
<tr>
<td>2.1.1 A heuristic approximation</td>
<td>227</td>
</tr>
<tr>
<td>2.1.2 The accuracy of the Poisson approximation</td>
<td>231</td>
</tr>
<tr>
<td>2.2 Some other "counting" distributions</td>
<td>233</td>
</tr>
<tr>
<td>2.2.1 The mixed Poisson distribution</td>
<td>233</td>
</tr>
<tr>
<td>2.2.2 Compound mixing</td>
<td>237</td>
</tr>
<tr>
<td>2.2.3 The ((a, b, 0)) and ((a, b, 1)) (or Katz-Panjer's) classes</td>
<td>239</td>
</tr>
<tr>
<td>3 THE DISTRIBUTION OF THE AGGREGATE CLAIM</td>
<td>241</td>
</tr>
<tr>
<td>3.1 The case of a homogeneous group</td>
<td>241</td>
</tr>
<tr>
<td>3.1.1 The method of convolutions</td>
<td>241</td>
</tr>
<tr>
<td>3.1.2 The case when (N) has a Poisson distribution</td>
<td>245</td>
</tr>
<tr>
<td>3.1.3 The mgf.'s method</td>
<td>246</td>
</tr>
<tr>
<td>3.2 The case of several homogeneous groups</td>
<td>248</td>
</tr>
<tr>
<td>3.2.1 A general scheme and reduction to one group</td>
<td>248</td>
</tr>
<tr>
<td>3.2.2 The significance of the weights (w_i)</td>
<td>251</td>
</tr>
<tr>
<td>4 NORMAL APPROXIMATION OF THE DISTRIBUTION OF THE AGGREGATE CLAIM</td>
<td>253</td>
</tr>
<tr>
<td>4.1 A limit theorem</td>
<td>253</td>
</tr>
<tr>
<td>4.2 Estimation of premiums</td>
<td>257</td>
</tr>
<tr>
<td>4.3 The accuracy of normal approximation</td>
<td>259</td>
</tr>
<tr>
<td>4.4 Proof of Theorem 10</td>
<td>260</td>
</tr>
<tr>
<td>5 EXERCISES</td>
<td>263</td>
</tr>
</tbody>
</table>
Markov Chains. Modeling Claim and Cash Flows

1 A GENERAL FRAMEWORK AND TYPICAL SITUATIONS
 1.1 Preliminaries ... 269
 1.2 Processes with independent increments 271
 1.2.1 The simplest counting process 271
 1.2.2 Brownian motion ... 271
 1.3 Markov processes .. 274
2 POISSON AND OTHER COUNTING PROCESSES 276
 2.1 The homogeneous Poisson process 276
 2.2 The non-homogeneous Poisson process 281
 2.2.1 A model and examples 281
 2.2.2 Proof of Proposition 1 284
 2.3 The Cox process ... 285
3 COMPOUND PROCESSES .. 287
4 MARKOV CHAINS. CASH FLOWS IN THE MARKOV ENVIRONMENT 289
 4.1 Preliminaries .. 289
 4.2 Variables defined on a Markov chain. Cash flows 295
 4.2.1 Variables defined on states 295
 4.2.2 Mean discounted payments 296
 4.2.3 The case of absorbing states 298
 4.2.4 Variables defined on transitions 301
 4.2.5 What to do if the chain is not homogeneous 302
 4.3 The first step analysis. An infinite horizon 302
 4.3.1 Mean discounted payments in the case of infinite time horizon 303
 4.3.2 The first step approach to random walk problems 305
 4.4 Limiting probabilities and stationary distributions 310
 4.5 The ergodicity property and classification of states 314
 4.5.1 Classes of states ... 314
 4.5.2 The recurrence property 315
 4.5.3 Recurrence and travel times 318
 4.5.4 Recurrence and ergodicity 320
5 EXERCISES ... 321

CHAPTER 6. Random Processes. II. Brownian Motion and Martingales.
Hitting Times

1 BROWNIAN MOTION AND ITS GENERALIZATIONS 329
 1.1 Further properties of the standard Brownian motion 329
 1.1.1 Non-differentiability of trajectories 329
 1.1.2 Brownian motion as an approximation. The invariance principle 330
 1.1.3 The distribution of w_t, hitting times, and the maximum value of Brownian motion .. 331
 1.2 The Brownian motion with drift 333
 1.2.1 Modeling of the surplus process. What a Brownian motion with drift approximates in this case 334
Contents

2.6.1 The first surplus below the initial level .. 390
2.6.2 The renewal approximation ... 391
2.6.3 The Cramér-Lundberg approximation ... 395
2.6.4 Proof of Theorem 5 from Section 2.6.1 395
2.7 Some recurrent relations and computational aspects 399

3 CRITERIA CONNECTED WITH PAYING DIVIDENDS
3.1 A general model ... 403
3.2 The case of the simple random walk .. 405
3.3 Finding an optimal strategy .. 408

4 EXERCISES ... 409

CHAPTER 8. Survival Distributions ... 413
1 THE DISTRIBUTION OF THE LIFETIME ... 413
1.1 Survival functions and force of mortality 413
1.2 The time-until-death for a person of a given age 418
1.3 Curtate-future-lifetime .. 422
1.4 Survivorship groups .. 423
1.5 Life tables and interpolation ... 424
1.5.1 Life tables .. 424
1.5.2 Interpolation for fractional ages .. 429
1.6 Some analytical laws of mortality .. 431
2 A MULTIPLE DECREMENT MODEL .. 434
2.1 A single life ... 434
2.2 Another view: net probabilities of decrement 438
2.3 A survivorship group .. 442
2.4 Proof of Proposition 1 .. 443
3 MULTIPLE LIFE MODELS ... 444
3.1 The joint distribution ... 445
3.2 The lifetime of statuses .. 447
3.3 A model of dependency: conditional independence 451
3.3.1 A definition and the first example ... 452
3.3.2 The common shock model .. 453
4 EXERCISES .. 455

CHAPTER 9. Life Insurance Models .. 461
1 A GENERAL MODEL .. 461
1.1 The present value of a future payment .. 461
1.2 The present value of payments to many clients 464
2 SOME PARTICULAR TYPES OF CONTRACTS 467
2.1 Whole life insurance .. 467
2.1.1 The continuous time case (benefits payable at the moment of death) ... 467
2.1.2 The discrete time case (benefits payable at the end of the year of death) .. 467
2.1.3 A relation between A_x and \bar{A}_x ... 470
2.1.4 The case of benefits payable at the end of the m-thly period 471
2.2 Deferred whole life insurance 473
 2.2.1 The continuous time case 473
 2.2.2 The discrete time case 474
2.3 Term insurance 474
 2.3.1 Continuous time 474
 2.3.2 Discrete time 476
2.4 Endowments 478
 2.4.1 Pure endowment 478
 2.4.2 Endowment 478
3 VARYING BENEFITS 480
 3.1 Certain payments 480
 3.2 Random payments 484
4 MULTIPLE DECREMENT AND MULTIPLE LIFE MODELS 485
 4.1 Multiple decrements 485
 4.2 Multiple life insurance 488
5 ON THE ACTUARIAL NOTATION 491
6 EXERCISES 492

CHAPTER 10. Annuity Models 499
1 INTRODUCTION. TWO APPROACHES TO COMPUTING ANNUITIES 499
 1.1 Continuous annuities 499
 1.2 Discrete annuities 501
2 LEVEL ANNUITIES. A CONNECTION WITH INSURANCE 504
 2.1 Certain annuities. Some notation 504
 2.2 Random annuities 504
3 SOME PARTICULAR TYPES OF LEVEL ANNUITIES. EXAMPLES 506
 3.1 Whole life annuities 506
 3.2 Temporary annuities 509
 3.3 Deferred annuities 512
 3.4 Certain and life annuity 514
4 MORE ON VARYING PAYMENTS 516
5 ANNUITIES WITH m-thly PAYMENTS 518
6 MULTIPLE DECREMENT AND MULTIPLE LIFE MODELS 521
 6.1 Multiple decrements 521
 6.2 Multiple life annuities 523
7 EXERCISES 525

CHAPTER 11. Premiums and Reserves 531
1 SOME GENERAL PREMIUM PRINCIPLES 531
2 PREMIUM ANNUITIES 536
 2.1 Preliminaries. General principles 536
 2.2 Benefit premiums. The case of a single risk 537
 2.2.1 Net rate 537
 2.2.2 The case when “Y is consistent with Z” 541
CHAPTER 12. Risk Exchange: Reinsurance and Coinsurance

1 REINSURANCE FROM THE STAND POINT OF A CEDENT
 1.1 Some optimization considerations
 1.1.1 Expected utility maximization
 1.1.2 Variance as a measure of risk
 1.2 Proportional reinsurance. Adding a new contract to an existing portfolio
 1.2.1 The case of a fixed security loading coefficient
 1.2.2 The case of the standard deviation premium principle
 1.3 Long-term insurance. Ruin probability as a criterion
 1.3.1 An example with proportional reinsurance
 1.3.2 An example with excess-of-loss insurance

2 RISK EXCHANGE AND RECIPROCITY OF COMPANIES
 2.1 A general framework and some examples
 2.2 Two more examples with expected utility maximization
 2.3 The case of the mean-variance criterion
 2.3.1 Minimization of variances
 2.3.2 The exchange of portfolios

3 REINSURANCE MARKET
 3.1 A model of the exchange market of random assets
 3.2 An example concerning reinsurance

4 EXERCISES

Tables
References
Answers to Exercises
Subject Index