Statistical Methods for Spatio-Temporal Systems

Edited by
Bärbel Finkenstädt
University of Warwick
Coventry, U.K.

Leonhard Held
Ludwig-Maximilians University
Munich, Germany

Valerie Isham
University College London
U.K.
Contents

1 Spatio-Temporal Point Processes: Methods and Applications 1
 Peter J. Diggle

2 Spatio-Temporal Modelling — with a View to Biological Growth 47
 Eva B. Vedel Jensen, Kristjana Ýr Jónsdóttir, Jürgen Schmiegel, and Ole E. Barndorff-Nielsen

3 Using Transforms to Analyze Space-Time Processes 77
 Montserrat Fuentes, Peter Guttorp, and Paul D. Sampson

4 Geostatistical Space-Time Models, Stationarity, Separability, and Full Symmetry 151
 Tilmann Gneiting, Marc G. Genton, and Peter Guttorp

5 Space-Time Modelling of Rainfall for Continuous Simulation 177
 Richard E. Chandler, Valerie Isham, Enrica Bellone, Chi Yang, and Paul Northrop

6 A Primer on Space-Time Modeling from a Bayesian Perspective 217
 David Higdon

Index 281
CHAPTER 1

Spatio-Temporal Point Processes: Methods and Applications

Peter J. Diggle

Contents

1.1 Introduction ... 2
 1.1.1 Motivating examples .. 2
 1.1.1.1 Amacrine cells in the retina of a rabbit 2
 1.1.1.2 Bovine tuberculosis in Cornwall, U.K. 3
 1.1.1.3 Gastroenteric disease in Hampshire, U.K. 4
 1.1.1.4 The U.K. 2001 epidemic of foot-and-mouth disease 5
 1.1.2 Chapter outline .. 6
1.2 Statistical methods for spatial point processes 7
 1.2.1 Descriptors of pattern: spatial regularity, complete spatial randomness, and spatial aggregation 7
 1.2.2 Functional summary statistics 8
 1.2.3 Functional summary statistics for the amacrine data 12
 1.2.4 Likelihood-based methods 13
 1.2.4.1 Pairwise interaction point processes 13
 1.2.4.2 Maximum pseudo-likelihood).. 14
 1.2.4.3 Monte Carlo maximum likelihood 15
 1.2.5 Bivariate pairwise interaction point processes 16
 1.2.6 Likelihood-based analysis of the amacrine cell data 17
1.3 Strategies for the analysis of spatio-temporal point patterns ... 18
 1.3.1 Strategies for discrete-time data 19
 1.3.1.1 Transition models 19
 1.3.1.2 A transition model for spatial aggregation 19
 1.3.1.3 Marked point process models 20
 1.3.2 Analysis strategies for continuous-time data 21
 1.3.2.1 Empirical modelling: log-Gaussian spatio-temporal Cox processes .. 21
 1.3.2.2 Mechanistic modelling: conditional intensity and a partial likelihood 23
1.1 Introduction

This chapter is concerned with the analysis of data whose basic format is
\((x_i, t_i) : i = 1, \ldots, n \), where each \(x_i \) denotes the location and \(t_i \) the corresponding time of occurrence of an event of interest. We shall assume that the data form a complete record of all events which occur within a pre-specified spatial region \(A \) and a prespecified time-interval, \((0, T)\). We call a data-set of this kind a spatio-temporal point pattern, and the underlying stochastic model for the data a spatio-temporal point process.

1.1.1 Motivating examples

1.1.1.1 Amacrine cells in the retina of a rabbit

One general approach to analysing spatio-temporal point process data is to extend existing methods for purely spatial data by considering the time of occurrence as a distinguishing feature, or mark, attached to each event. Before giving an example of this, we give an even simpler example of a marked spatial

![Figure 1.1](image.png) Amacrine cells in the retina of a rabbit. On and off cells are shown as open and closed circles, respectively. The rectangular region on which the cells are observed has dimension 1060 by 662 \(\mu m \).