Contents

Preface v

1 THE TOOLS OF ASTRONOMY 1

1 The Celestial Sphere 2
 1.1 The Greek Tradition 2
 1.2 The Copernican Revolution 5
 1.3 Positions on the Celestial Sphere 8
 1.4 Physics and Astronomy 19

2 Celestial Mechanics 23
 2.1 Elliptical Orbits 23
 2.2 Newtonian Mechanics 29
 2.3 Kepler’s Laws Derived 39
 2.4 The Virial Theorem 50

3 The Continuous Spectrum of Light 57
 3.1 Stellar Parallax 57
 3.2 The Magnitude Scale 60
 3.3 The Wave Nature of Light 63
 3.4 Blackbody Radiation 68
 3.5 The Quantization of Energy 71
 3.6 The Color Index 75

4 The Theory of Special Relativity 84
 4.1 The Failure of the Galilean Transformations 84
 4.2 The Lorentz Transformations 87
 4.3 Time and Space in Special Relativity 92
 4.4 Relativistic Momentum and Energy 102
11 ■ The Sun 349
11.1 The Solar Interior 349
11.2 The Solar Atmosphere 360
11.3 The Solar Cycle 381

12 ■ The Interstellar Medium and Star Formation 398
12.1 Interstellar Dust and Gas 398
12.2 The Formation of Protostars 412
12.3 Pre-Main-Sequence Evolution 425

13 ■ Main Sequence and Post-Main-Sequence Stellar Evolution 446
13.1 Evolution on the Main Sequence 446
13.2 Late Stages of Stellar Evolution 457
13.3 Stellar Clusters 474

14 ■ Stellar Pulsation 483
14.1 Observations of Pulsating Stars 483
14.2 The Physics of Stellar Pulsation 491
14.3 Modeling Stellar Pulsation 499
14.4 Nonradial Stellar Pulsation 503
14.5 Helioseismology and Asteroseismology 509

15 ■ The Fate of Massive Stars 518
15.1 Post-Main-Sequence Evolution of Massive Stars 518
15.2 The Classification of Supernovae 524
15.3 Core-Collapse Supernovae 529
15.4 Gamma-Ray Bursts 543
15.5 Cosmic Rays 550

16 ■ The Degenerate Remnants of Stars 557
16.1 The Discovery of Sirius B 557
16.2 White Dwarfs 559
16.3 The Physics of Degenerate Matter 563
16.4 The Chandrasekhar Limit 569
16.5 The Cooling of White Dwarfs 572
16.6 Neutron Stars 578
16.7 Pulsars 586
23 ■ Formation of Planetary Systems 848
23.1 Characteristics of Extrasolar Planetary Systems 848
23.2 Planetary System Formation and Evolution 857

IV GALAXIES AND THE UNIVERSE 873

24 ■ The Milky Way Galaxy 874
24.1 Counting the Stars in the Sky 874
24.2 The Morphology of the Galaxy 881
24.3 The Kinematics of the Milky Way 898
24.4 The Galactic Center 922

25 ■ The Nature of Galaxies 940
25.1 The Hubble Sequence 940
25.2 Spiral and Irregular Galaxies 948
25.3 Spiral Structure 964
25.4 Elliptical Galaxies 983

26 ■ Galactic Evolution 999
26.1 Interactions of Galaxies 999
26.2 The Formation of Galaxies 1016

27 ■ The Structure of the Universe 1038
27.1 The Extragalactic Distance Scale 1038
27.2 The Expansion of the Universe 1052
27.3 Clusters of Galaxies 1058

28 ■ Active Galaxies 1085
28.1 Observations of Active Galaxies 1085
28.2 A Unified Model of Active Galactic Nuclei 1108
28.3 Radio Lobes and Jets 1122
28.4 Using Quasars to Probe the Universe 1130

29 ■ Cosmology 1144
29.1 Newtonian Cosmology 1144
29.2 The Cosmic Microwave Background 1162
29.3 Relativistic Cosmology 1183
29.4 Observational Cosmology 1199
30 ■ The Early Universe

30.1 The Very Early Universe and Inflation 13
30.2 The Origin of Structure 1247

A ■ Astronomical and Physical Constants

B ■ Unit Conversions

C ■ Solar System Data

D ■ The Constellations

E ■ The Brightest Stars

F ■ The Nearest Stars

G ■ Stellar Data

H ■ The Messier Catalog

I ■ Constants, A Programming Module

J ■ Orbit, A Planetary Orbit Code

K ■ TwoStars, A Binary Star Code

L ■ StatStar, A Stellar Structure Code

M ■ Galaxy, A Tidal Interaction Code

N ■ WMAP Data

Suggested Reading

Index