S. Henzler

Power Management of Digital Circuits in Deep Sub-Micron CMOS Technologies

With 127 Figures

Springer
Contents

Preface xi
List of Symbols and Abbreviations xiii

1. INTRODUCTION TO LOW-POWER DIGITAL INTEGRATED CIRCUIT DESIGN 1
 1.1 Transistor Scaling in the Context of Power Consumption and Performance 1
 1.1.1 Fundamental CMOS Scaling Strategies 5
 1.1.2 Leakage Currents in Modern MOS Transistors 8
 1.1.3 Transistor Scaling in the Deep Sub-Micron Regime 16
 1.2 Classic Low-Power Strategies 18
 1.3 Low-Power Strategies beyond the Quarter Micron Technology node 19

2. LOGIC WITH MULTIPLE SUPPLY VOLTAGES 23
 2.1 Principle of Multiple Supply Voltages 23
 2.2 Power Saving Capability and Voltage Assignment 25
 2.2.1 Supply Voltage Assignment Algorithm 28
 2.2.1.1 Extended Clustered Voltage Scaling 32
 2.3 Level Conversion in Multi-\(V_{DD}\) Circuits 33
 2.3.1 Asynchronous Level-Shifter Design 34
 2.3.2 Design of Level-Shifter FlipFlops 38
 2.3.3 Level Conversion in Dynamic Circuits 42
 2.4 Dynamic Voltage Scaling (DVS) 43

3. LOGIC WITH MULTIPLE THRESHOLD VOLTAGES 49
 3.1 Principle of Multiple Threshold Voltages 49
3.2 Concept of Leakage Effective Gate Width 50
3.3 Impact of Supply and Threshold Voltage Variability on Gate Delay 51
3.4 Active Body Bias Strategies 52
 3.4.1 Reverse Body Bias Technique (RBB) 54
 3.4.1.1 Constraints of Reverse Body Biasing 56
 3.4.1.2 Scaling Properties of RBB 57
 3.4.2 Forward Body Bias Technique (FBB) 57
 3.4.2.1 Constraints of Forward Body Biasing 59
 3.4.2.2 Scaling Properties of FBB 60

4. FORCING OF TRANSISTOR STACKS 61
 4.1 Principle of Stack Forcing 61
 4.1.1 Impact of Gate and Junction Leakage 64
 4.2 Stack Forcing as Leakage Reduction Technique 66

5. POWER GATING 69
 5.1 Principle of Power Gating 69
 5.2 Design Trade-Offs of Power Gating 72
 5.3 Basic Properties of Power Gating 75
 5.3.1 Implementation of the Power Switch Devices 75
 5.3.2 Stationary Active and Idle State 78
 5.3.3 Transient Behavior During Block Activation 79
 5.3.4 Interfaces of a Sleep Transistor Block 80
 5.3.5 System Aspects of Power Gating 82
 5.4 Embodiments of Power Gating 86
 5.4.1 Sleep Transistor within Standard Cells 86
 5.4.2 Shared Sleep Transistor 88
 5.4.3 Optimization of Gate Potential - Gate Boosting and Super Cut-Off 90
 5.4.4 ZigZag Super Cut-Off CMOS 92
 5.4.5 Selective Sleep Transistor Scheme 98
 5.5 Demonstrator Design and Measurement 99
 5.5.1 16-bit Multiply-Accumulate Unit 99
 5.5.1.1 Testchip Measurement 101
 5.5.2 16-bit Finite Impulse Response Filter 104
 5.5.3 Comparison of Current Profiles of Differently Pipelined Circuits 105
 5.6 Sleep Transistor Design Task 107
6. CONCLUSION 169
References 171
Index 179