Scaling Issues and Design of MEMS

Salvatore Baglio
University of Catania, Italy

Salvatore Castorina
SYNAPTO, Catania, Italy

Nicolò Savalli
University of Catania, Italy

John Wiley & Sons, Ltd
Contents

Preface ix
Introduction xi

1 Scaling of MEMS 1
 1.1 Introduction to Scaling Issues 1
 1.2 Examples of Dimensional Scaling Potentials 4
 1.2.1 Scaling effects on a cantilever beam 4
 1.2.2 Scaling of electrostatic actuators 8
 1.2.3 Scaling of thermal actuators 11
 1.3 Motivation, Fabrication and Scaling of MEMS 14
 1.4 Scaling as a Methodological Approach 16
References 17

2 Scaling of Microactuators – an Overview 19
 2.1 Electrostatic Actuators 19
 2.1.1 Transverse combs modelling 20
 2.1.2 Lateral combs modelling 22
 2.2 Magnetic Transducers 23
 2.2.1 Magnetic actuators 25
 2.2.2 Ferromagnetic transducers 31
 2.3 Thermal Actuators 36
 2.3.1 Thermomechanical actuators 40
Acknowledgements 50
References 50

3 Scaling of Thermal Sensors 53
 3.1 Thermoelectric Sensors 53
 3.2 Application: Dew-Point Relative Humidity Sensors 61
 3.2.1 Device structures and operating principles 62
3.2.2 Device modelling and simulations 64
3.2.3 Device design 67
3.3 Conclusions 71
Acknowledgements 71
References 72

4 Inductive Sensors for Magnetic Fields 73
4.1 Inductive Microsensors for Magnetic Particles 77
4.1.1 Integrated inductive sensors 77
4.1.2 Planar differential transformer 79
4.1.3 Signal-conditioning circuits 84
4.1.4 Simulation of the planar differential transformer 85
4.1.5 Experimental results 87
4.2 Magnetic Immunoassay Systems 97
Acknowledgements 100
References 100

5 Scaling of Mechanical Sensors 103
5.1 Introduction 103
5.2 Device Modelling and Fabrication Processes 105
5.2.1 Fabrication processes 105
5.2.2 Devices modelling 107
5.2.3 Accelerometers 109
5.2.4 Resonant mass sensors 110
5.3 Experimental Device Prototypes 112
5.3.1 CMOS devices 112
5.3.2 SOI devices 116
5.3.3 Finite element modelling 120
5.4 Scaling Issues on Microaccelerometers and Mass Sensors 123
5.5 Some Experimental Results 127
5.6 Vibrating Microgyroscopes 130
5.6.1 Coupled vibratory gyroscopes 134
Acknowledgements 145
References 145

6 Scaling of Energy Sources 149
6.1 Introduction 149
6.2 Energy Supply Strategies for Autonomous Microsystems 151
9 Examples of Scaling Effects Analysis – DIEES-MEMSLAB 189
 9.1 Introduction 189
 9.2 Examples of Scaling Cantilever Beam Devices 191
 9.3 DIEES-MEMSLAB-Tutorial 198
 9.3.1 Introduction 198
 9.3.2 Descriptions of the microstructures and analytical methods 200
 9.4 Conclusions 219
References 220

10 Concluding Remarks 221

Index 223