Statistical Signal Processing
Detection, Estimation, and Time Series Analysis

Louis L. Scharf
University of Colorado at Boulder

with Cédric Demeure collaborating on Chapters 10 and 11
Contents

CHAPTER 1

Introduction 1
1.1 Statistical Signal Processing and Related Topics 1
1.2 The Structure of Statistical Reasoning 3
1.3 A Detection Problem 4
1.4 An Estimation Problem 7
1.5 A Time Series Problem 9
1.6 Notation and Terminology 11
 Probability Distributions 11
 Linear Models 12
References and Comments 18
Problems 19

CHAPTER 2

Rudiments of Linear Algebra and Multivariate Normal Theory 23
2.1 Vector Spaces 24
 Euclidean Space 24
 Hilbert Space 25
 Matrices 25
2.2 Linear Independence 25
 Gram Determinant 26
 Sequences of Gram Determinants 27
 Cholesky Factors of the Gram Matrix 29
2.3 QR Factors 31
 Gram-Schmidt Procedure 32
 Householder Transformation 33
 Givens Transformation 36

2.4 Linear Subspaces 37
 Basis 38
 Direct Subspaces 38
 Unicity 38
 Dimension, Rank, and Nullity 39
 Linear Equations 40
 Decomposition of \mathbb{R}^n 41

2.5 Hermitian Matrices 42
 The Eigenvalues of a Hermitian Matrix Are Real 42
 The Eigenvectors of a Hermitian Matrix Are Orthogonal 42
 Hermitian Matrices Are Diagonalizable 42

2.6 Singular Value Decomposition 43
 Range and Null Space 45
 Low Rank Approximation 45
 Resolution (or Decomposition) of Identity 46

2.7 Projections, Rotations, and Pseudoinverses 46
 Projections 47
 Rotations 48
 Pseudoinverse 49
 Orthogonal Representations 49

2.8 Quadratic Forms 51

2.9 Matrix Inversion Formulas 52

2.10 The Multivariate Normal Distribution 55
 Characteristic Function 56
 The Bivariate Normal Distribution 57
 Linear Transformations 59
 Analysis and Synthesis 60
 Diagonalizing Transformations 61

2.11 Quadratic Forms in MVN Random Variables 62
 Quadratic Forms Using Projection Matrices 64
 Asymptotics 66

References and Comments 66
Problems 67

CHAPTER 3

Sufficiency and MVUB Estimators 77

3.1 Sufficiency 78
 Discrete Random Variables 79
 Continuous Random Variables 82
 Nonsingular Transformations and Sufficiency 85
Invariant Tests and Maximal Invariant Statistics 132
Uniformly Most Powerful Invariant Test 135
Reduction by Sufficiency and Invariance 135

4.9 Matched Filters (Normal) 136
4.10 CFAR Matched Filters (t) 140
4.11 Matched Subspace Filters (χ^2) 145
4.12 CFAR Matched Subspace Filters (F) 148
A Comparative Summary and a Partial Ordering of Performance 149

4.13 Signal Design 153
 Signal Design for Detection 153
 Constrained Signal Design 154

4.14 Detectors for Gaussian Random Signals 157
 Likelihood Ratios and Quadratic Detectors 157
 Orthogonal Decomposition 158
 Distribution of Log Likelihood 158
 Rank Reduction 160

4.15 Linear Discriminant Functions 162
 Linear Discrimination 163
 An Extremization Problem 163
 Maximizing Divergence 164

References and Comments 166
Problems 167
Appendix: The t, χ^2, and F Distributions 174
 Central χ^2 174
 Central t 175
 Central F 175
 Noncentral χ^2 176
 Noncentral t 177
 Noncentral F 178
 Size and Power 178

CHAPTER 5
Bayes Detectors 179

5.1 Bayes Risk for Hypothesis Testing 180
 Loss 181
 Risk 181
 Bayes Risk 183

5.2 Bayes Tests of Simple Hypotheses 183

5.3 Minimax Tests 185
 Risk Set 185
 Bayes Tests 187
 Minimax and Maximin Tests 188
 Computing Minimax Tests 189
 Least Favorable Prior 190
5.4 Bayes Tests of Multiple Hypotheses 191
5.5 M-Orthogonal Signals 193
5.6 Composite Matched Filters and Associative Memories 198
 Application to Associative Memories 201
 Summary 202
5.7 Likelihood Ratios, Posterior Probabilities, and Odds 202
 Bayes Tests 203
5.8 Balanced Tests 204
References and Comments 205
Problems 206

CHAPTER 6

Maximum Likelihood Estimators 209

6.1 Maximum Likelihood Principle 210
 Random Parameters 213
6.2 Sufficiency 216
6.3 Invariance 217
6.4 The Fisher Matrix and the Cramer-Rao Bound 221
 Cramer-Rao Bound 222
 Concentration Ellipses 225
 Efficiency 226
 Cramer-Rao Bound for Functions of Parameters 229
 Numerical Maximum Likelihood and the Stochastic Fisher Matrix 230
6.5 Nuisance Parameters 231
6.6 Entropy, Likelihood, and Nonlinear Least Squares 233
 Entropy 233
 Likelihood 234
 Nonlinear Least Squares 234
 Comments 235
6.7 The Multivariate Normal Model 235
6.8 The Linear Statistical Model 238
6.9 Mode Identification in the Linear Statistical Model 239
 Maximum Likelihood Equations 240
 The Fisher Information Matrix 241
6.10 Maximum Likelihood Identification of ARMA Parameters 242
 Maximum Likelihood Equations 245
 The Projector $P(a)$ 245
 Interpretations 246
 KiSS 247
 The Fisher Information Matrix 248
 Mode Identification 250
6.11 Maximum Likelihood Identification of a Signal Subspace 252
CHAPTER 8
Minimum Mean-Squared Error Estimators 323

8.1 Conditional Expectation and Orthogonality 324
8.2 Minimum Mean-Squared Error Estimators 326
8.3 Linear Minimum Mean-Squared Error (LMMSE) Estimators 327
 Wiener-Hopf Equation 327
 Summary and Interpretations 328
8.4 Low-Rank Wiener Filter 330
8.5 Linear Prediction 331
8.6 The Kalman Filter 333
 Prediction 333
 Estimation 335
 Covariance Recursions 336
 The Kalman Recursions 337
8.7 Low-Rank Approximation of Random Vectors 337
 Interpretation 338
 Order Selection 339
8.8 Optimum Scalar Quantizers 339
 Scalar Quantizers 340
 Designing the Optimum Quantizer 342
8.9 Optimum Block Quantizers 346
8.10 Rank Reduction and Rate Distortion 349
References and Comments 351
Problems 352

CHAPTER 9
Least Squares 359

9.1 The Linear Model 360
 Interpretations 360
 The Normal Error Model 364
9.2 Least Squares Solutions 365
 Projections 365
 Signal and Orthogonal Subspaces 366
 Orthogonality 368
9.3 Structure of Subspaces in Least Squares Problems 371
9.4 Singular Value Decomposition 372
 Synthesis Representation 373
 Analysis Representations 373
9.5 Solving Least Squares Problems 374
 Cholesky-Factoring the Gram Matrix 374
 QR-Factoring the Model Matrix 375
 Singular Value Decomposition 376
9.6 Performance of Least Squares 377
 Posterior Model 377
 Performance 378

9.7 Goodness of Fit 378
 Statistician's Pythagorean Theorem 379

9.8 Improvement in SNR 379

9.9 Rank Reduction 380

9.10 Order Selection in the Linear Statistical Model 381

9.11 Sequential Least Squares 384

9.12 Weighted Least Squares 386

9.13 Constrained Least Squares 387
 Interpretations 388
 Condition Adjustment 388

9.14 Quadratic Minimization with Linear Constraints 389

9.15 Total Least Squares 392

9.16 Inverse Problems and Underdetermined Least Squares 393
 Characterizing the Class of Solutions 394
 Minimum-Norm Solution 395
 Reducing Rank 395
 Bayes 397
 Maximum Entropy 398
 Image Formation 398
 Newton-Raphson 400

9.17 Mode Identification in the Linear Statistical Model 401

9.18 Identification of Autoregressive Moving Average Signals and Systems 402

9.19 Linear Prediction and Prony's Method 405
 Modified Least Squares 405
 Linear Prediction 406
 Prony's Method 407

9.20 Least Squares Estimation of Structured Correlation Matrices 409
 Linear Structure 409
 Toeplitz Matrix 410
 Low-Rank Matrix 411
 Orthonormal Case 413
 More on the Orthonormal Case 413

References and Comments 415
Problems 415

CHAPTER 10

Linear Prediction 423

10.1 Stationary Time Series 424
 Wold Representation 426
 Kolmogorov Representation 427
 Filtering Interpretations 428
10.2 Stationary Prediction Theory 429
 Prediction Error Variance 430
 Prediction Error Variance and Poles and Zeros 431
 Spectral Flatness 433
 Filtering Interpretations 434
10.3 Maximum Entropy and Linear Prediction 436
10.4 Nonstationary Linear Prediction 438
 Synthesis 440
 Nonstationary Innovations Representation 441
 Analysis 441
 Nonstationary Predictor Representation 442
10.5 Fast Algorithms of the Levinson Type 442
 Interpretation 446
 Backward Form 447
 Filtering Interpretations 447
 AR Synthesis Lattice 448
 ARMA Lattice 450
10.6 Fast Algorithms of the Schur Type 451
10.7 Least Squares Theory of Linear Prediction 452
 QR Factors and Sliding Windows 456
 Summary and Interpretations 459
10.8 Lattice Algorithms 460
 Initialization 462
 Recursions for \(k_t \) 462
 Solving for \(\sigma_i^2 \) 462
 Algebraic Interpretations 463
 Lattice Interpretations 463
10.9 Prediction in Autoregressive Moving Average Time Series 464
 Stationary State-Space Representations 464
 Markovian State-Space Model 466
 Nonstationary (or Innovations) State-Space Representations 468
10.10 Fast Algorithms of the Morf-Sidhu-Kailath Type 470
10.11 Linear Prediction and Likelihood Formulas 472
10.12 Differential PCM 473
References and Comments 475
Problems 480

CHAPTER 11
Modal Analysis 483
11.1 Signal Model 484
 Modal Decomposition 485
 ARMA Impulse Response 486
 Linear Prediction 488
11.2 The Original Prony Method 489
 Filter Coefficients 489
 Modes 490
11.3 Least Squares Prony Method 491
 Choice of the Data Matrix 492
 Fast Algorithms 492
 Solving for the Mode Weights 493
 Solving for the Filter Coefficients 493
11.4 Maximum Likelihood and Exact Least Squares 493
 Compressed Likelihood 494
11.5 Total Least Squares 495
11.6 Principal Component Method (Tufts and Kumaresan) 496
 Information Criteria 496
 Overfitting 497
 Order Selection 498
 Real Arithmetic 498
11.7 Pisarenko and MUSIC Methods 499
 The Pisarenko Method 500
 MUSIC 502
11.8 Pencil Methods 503
11.9 A Frequency-Domain Version of Prony's Method (Kumaresan) 505
 Divided Differences 506
 Solving for $A(z)$ 506
 Solving for $B(z)$ 507

References 508

Index 515