Contents

1 Integral Transforms
 1.1 Brief Historical Introduction 1
 1.2 Basic Concepts and Definitions 6

2 Fourier Transforms and Their Applications
 2.1 Introduction ... 9
 2.2 The Fourier Integral Formulas 10
 2.3 Definition of the Fourier Transform and Examples 12
 2.4 Fourier Transforms of Generalized Functions 17
 2.5 Basic Properties of Fourier Transforms 28
 2.6 Poisson's Summation Formula 37
 2.7 The Shannon Sampling Theorem 44
 2.8 Gibbs' Phenomenon 54
 2.9 Heisenberg's Uncertainty Principle 57
 2.10 Applications of Fourier Transforms to Ordinary Differential Equations .. 60
 2.11 Solutions of Integral Equations 65
 2.12 Solutions of Partial Differential Equations 68
 2.13 Fourier Cosine and Sine Transforms with Examples 91
 2.14 Properties of Fourier Cosine and Sine Transforms 93
 2.15 Applications of Fourier Cosine and Sine Transforms to Partial Differential Equations 96
 2.16 Evaluation of Definite Integrals 100
 2.17 Applications of Fourier Transforms in Mathematical Statistics 103
 2.18 Multiple Fourier Transforms and Their Applications 109
 2.19 Exercises ... 119

3 Laplace Transforms and Their Basic Properties 133
 3.1 Introduction ... 133
 3.2 Definition of the Laplace Transform and Examples 134
 3.3 Existence Conditions for the Laplace Transform 139
 3.4 Basic Properties of Laplace Transforms 140
 3.5 The Convolution Theorem and Properties of Convolution ... 145
 3.6 Differentiation and Integration of Laplace Transforms 151
 3.7 The Inverse Laplace Transform and Examples 154
 3.8 Tauberian Theorems and Watson's Lemma 168
4 Applications of Laplace Transforms

4.1 Introduction ... 181
4.2 Solutions of Ordinary Differential Equations 182
4.3 Partial Differential Equations, Initial and Boundary Value Problems ... 207
4.4 Solutions of Integral Equations 222
4.5 Solutions of Boundary Value Problems 225
4.6 Evaluation of Definite Integrals 228
4.7 Solutions of Difference and Differential-Difference Equations .. 230
4.8 Applications of the Joint Laplace and Fourier Transform 237
4.9 Summation of Infinite Series ... 248
4.10 Transfer Function and Impulse Response Function of a Linear System ... 251
4.11 Exercises .. 256

5 Fractional Calculus and Its Applications

5.1 Introduction .. 269
5.2 Historical Comments .. 270
5.3 Fractional Derivatives and Integrals 272
5.4 Applications of Fractional Calculus 279
5.5 Exercises .. 282

6 Applications of Integral Transforms to Fractional Differential and Integral Equations

6.1 Introduction .. 283
6.2 Laplace Transforms of Fractional Integrals and Fractional Derivatives ... 284
6.3 Fractional Ordinary Differential Equations 287
6.4 Fractional Integral Equations ... 290
6.5 Initial Value Problems for Fractional Differential Equations .. 295
6.6 Green’s Functions of Fractional Differential Equations 298
6.7 Fractional Partial Differential Equations 299
6.8 Exercises .. 312

7 Hankel Transforms and Their Applications

7.1 Introduction .. 315
7.2 The Hankel Transform and Examples 316
7.3 Operational Properties of the Hankel Transform 319
7.4 Applications of Hankel Transforms to Partial Differential Equations ... 322
7.5 Exercises .. 331
8 Mellin Transforms and Their Applications 339
 8.1 Introduction .. 339
 8.2 Definition of the Mellin Transform and Examples 340
 8.3 Basic Operational Properties of Mellin Transforms 343
 8.4 Applications of Mellin Transforms 349
 8.5 Mellin Transforms of the Weyl Fractional Integral and the Weyl Fractional Derivative 353
 8.6 Application of Mellin Transforms to Summation of Series 358
 8.7 Generalized Mellin Transforms 361
 8.8 Exercises ... 365

9 Hilbert and Stieltjes Transforms 371
 9.1 Introduction .. 371
 9.2 Definition of the Hilbert Transform and Examples 372
 9.3 Basic Properties of Hilbert Transforms 375
 9.4 Hilbert Transforms in the Complex Plane 378
 9.5 Applications of Hilbert Transforms 380
 9.6 Asymptotic Expansions of One-Sided Hilbert Transforms 388
 9.7 Definition of the Stieltjes Transform and Examples 391
 9.8 Basic Operational Properties of Stieltjes Transforms 394
 9.9 Inversion Theorems for Stieltjes Transforms 396
 9.10 Applications of Stieltjes Transforms 399
 9.11 The Generalized Stieltjes Transform 401
 9.12 Basic Properties of the Generalized Stieltjes Transform 403
 9.13 Exercises ... 404

10 Finite Fourier Sine and Cosine Transforms 407
 10.1 Introduction 407
 10.2 Definitions of the Finite Fourier Sine and Cosine Transforms and Examples 408
 10.3 Basic Properties of Finite Fourier Sine and Cosine Transforms 410
 10.4 Applications of Finite Fourier Sine and Cosine Transforms 416
 10.5 Multiple Finite Fourier Transforms and Their Applications 422
 10.6 Exercises ... 425

11 Finite Laplace Transforms 429
 11.1 Introduction 429
 11.2 Definition of the Finite Laplace Transform and Examples 430
 11.3 Basic Operational Properties of the Finite Laplace Transform 436
 11.4 Applications of Finite Laplace Transforms 439
 11.5 Tauberian Theorems 443
 11.6 Exercises ... 443
12 Z Transforms

- **12.1 Introduction** .. 445
- **12.2 Dynamic Linear Systems and Impulse Response** 445
- **12.3 Definition of the Z Transform and Examples** 449
- **12.4 Basic Operational Properties of Z Transforms** 453
- **12.5 The Inverse Z Transform and Examples** 459
- **12.6 Applications of Z Transforms to Finite Difference Equations** 463
- **12.7 Summation of Infinite Series** 466
- **12.8 Exercises** ... 469

13 Finite Hankel Transforms

- **13.1 Introduction** .. 473
- **13.2 Definition of the Finite Hankel Transform and Examples** 473
- **13.3 Basic Operational Properties** 476
- **13.4 Applications of Finite Hankel Transforms** 476
- **13.5 Exercises** ... 481

14 Legendre Transforms

- **14.1 Introduction** .. 485
- **14.2 Definition of the Legendre Transform and Examples** 486
- **14.3 Basic Operational Properties of Legendre Transforms** 489
- **14.4 Applications of Legendre Transforms to Boundary Value Problems** 497
- **14.5 Exercises** ... 498

15 Jacobi and Gegenbauer Transforms

- **15.1 Introduction** .. 501
- **15.2 Definition of the Jacobi Transform and Examples** 501
- **15.3 Basic Operational Properties** 504
- **15.4 Applications of Jacobi Transforms to the Generalized Heat Conduction Problem** 505
- **15.5 The Gegenbauer Transform and Its Basic Operational Properties** 507
- **15.6 Application of the Gegenbauer Transform** 510

16 Laguerre Transforms

- **16.1 Introduction** .. 511
- **16.2 Definition of the Laguerre Transform and Examples** 511
- **16.3 Basic Operational Properties** 516
- **16.4 Applications of Laguerre Transforms** 520
- **16.5 Exercises** ... 523