Optical Information Processing

Adolf W. Lohmann

Edited by Stefan Sinzinger

Universitätsverlag Ilmenau
2006
9 Nonlinear Transforms 87
 9.1 Graphical solution 87
 9.2 Polynomial Nonlinearity 88
 9.3 FM-Nonlinearity 89
 9.4 Hardclipping 89
 9.5 Amplitude height analysis 90

10 Schwarz Inequality 91

11 Sampling Theorem 93
 11.1 Properties of the SINC-Function 93
 11.2 Sampling at Shifted Points 94
 11.3 Sampling of periodic functions 95
 11.4 Sampling at the wrong interval 98
 11.5 Sampling in two dimensions 100
 11.6 Fourier transform by digital computation 101
 11.7 Large digital Fourier transform 102

12 Fresnel-Transformation 105
 12.1 Definitions 105
 12.2 Shift-theorem 106
 12.3 Tilt-theorem 106
 12.4 Sampling theorem for Fresnel transform pairs .. 107

13 The Stationary Phase Integral 111
 13.1 Fourier transform of the step-function 111
 13.2 The Fresnel integral 112
 13.3 The method of stationary phase 113
 13.4 Saddle-point method 116

14 What is Light? 119
 14.1 History ... 119
 14.2 What is Observable? 120
 14.3 The wave equation 121
 14.4 Complex representation of the wavefield 122
 14.5 Frequency averages 125
 14.6 The envelope representation of complex signals 126

15 The Uncertainty Principle 129
 15.1 The usual derivation 129
 15.2 The uncertainty of some specific fields 132
 15.3 Other definitions of x- and ν—spreads 135
 15.4 Gabor's information cells 137

16 Fundamentals of Diffraction Theory 141
 16.1 Terminology: diffraction and interference 141
16.2 History and classification of diffraction theories .. 142
16.3 Kirchhoff-approximation .. 143
16.4 The RSD theory of Fresnel diffraction .. 147
16.5 Derivation of the HFK-integral from the RSD-integral 152
16.6 The sampling theorem for FRS-diffraction .. 156
16.7 Justification of Young’s Diffraction Theory (YMR) 157

17 More About Evanescent Waves .. 163
17.1 Boundary conditions for \vec{E} and \vec{H}; Fresnel coefficients 163
17.2 A more abstract look at evanescent waves .. 167

18 Fresnel Diffraction on Periodic Objects — The Talbot-Effect (1836) 183
18.1 HFK-theory of the Talbot effect ... 184
18.2 RSD-Theory of the Talbot effect .. 184
18.3 Plane wave theory of the Talbot effect ... 185
18.4 What are these modulated plane waves, really? .. 187
18.5 A Fourier spectrometer based on the Talbot effect 190
18.6 The walk-off effect ... 194
18.7 Yet another look at Talbot images ... 196

19 Fresnel Diffraction on Zone Plates and Lenses .. 207
19.1 About inventing .. 207
19.2 Diffraction on the Fresnel Zone Plate .. 208
19.3 Image formation in terms of Fresnel diffraction .. 210

20 What is a Light Ray? ... 213
20.1 Motivation of our approach .. 213
20.2 The Fermat Principle as a consequence of wave optics 214
20.3 What are Shadows or “Non-Rays”? .. 218
20.4 Two examples of parageometrical optics ... 220
20.4.1 Tilted plane wave falling onto wide screen .. 221
20.4.2 A spherical wave falling onto a wide slit ... 224
20.4.3 An application of parageometric optics: ... 227

21 Application of Fresnel Diffraction to Signal Detection 229

22 Fraunhofer Diffraction .. 231
22.1 Observer at distance R—no lens is involved ... 231
22.2 Plane wave illumination—single lens ... 233
22.3 About the lens used for creating “infinity” ... 235
22.4 The “light tube” ... 237
22.5 Convergent illumination ... 238
22.6 Divergent illumination ... 239
22.7 Fraunhofer diffraction by an array of equal objects 240
22.8 Babinet’s principle ... 243
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>23 Application of Fraunhofer Diffraction to Optical Character Recognition</td>
<td>245</td>
</tr>
<tr>
<td>24 Coherent Image Formation</td>
<td>247</td>
</tr>
<tr>
<td>24.1 Two setups</td>
<td>247</td>
</tr>
<tr>
<td>24.2 Convolution theory of image formation</td>
<td>248</td>
</tr>
<tr>
<td>24.3 Spatial Filter theory of coherent image formation</td>
<td>252</td>
</tr>
<tr>
<td>25 Some Applications of Spatial Filtering</td>
<td>255</td>
</tr>
<tr>
<td>25.1 Historical remarks about Ernst Abbe (1840 - 1905)</td>
<td>255</td>
</tr>
<tr>
<td>25.2 Phase contrast microscopy</td>
<td>258</td>
</tr>
<tr>
<td>25.3 Differential interference contrast</td>
<td>260</td>
</tr>
<tr>
<td>25.4 Several image enhancement methods</td>
<td>260</td>
</tr>
<tr>
<td>26 Incoherent Image Formation</td>
<td>263</td>
</tr>
<tr>
<td>26.1 Definition of “coherent” and “incoherent” light</td>
<td>263</td>
</tr>
<tr>
<td>26.2 Convolution theory of incoherent image formation</td>
<td>264</td>
</tr>
<tr>
<td>26.3 Linear filter theory of incoherent image formation</td>
<td>266</td>
</tr>
<tr>
<td>26.4 The Duffieux formula</td>
<td>268</td>
</tr>
<tr>
<td>26.5 Measurement of the OTF</td>
<td>269</td>
</tr>
<tr>
<td>26.6 Incoherent image formation with transparent objects</td>
<td>271</td>
</tr>
<tr>
<td>26.7 Lens aberrations</td>
<td>274</td>
</tr>
<tr>
<td>26.8 The OTF of a perfect lens</td>
<td>276</td>
</tr>
<tr>
<td>26.9 Some specific OTF’s</td>
<td>280</td>
</tr>
<tr>
<td>26.9.1 Defocussing</td>
<td>280</td>
</tr>
<tr>
<td>26.9.2 Other lens aberrations</td>
<td>282</td>
</tr>
<tr>
<td>26.9.3 Rough lens surface</td>
<td>282</td>
</tr>
<tr>
<td>26.9.4 Double-slit aperture</td>
<td>283</td>
</tr>
<tr>
<td>26.9.5 Object Motion</td>
<td>284</td>
</tr>
<tr>
<td>26.9.6 Photography</td>
<td>285</td>
</tr>
<tr>
<td>26.9.7 The OTF-chain of TV</td>
<td>286</td>
</tr>
<tr>
<td>26.10 Quality criteria based on the OTF</td>
<td>286</td>
</tr>
<tr>
<td>26.11 OTF synthesis</td>
<td>290</td>
</tr>
<tr>
<td>26.11.1 Apodisation</td>
<td>291</td>
</tr>
<tr>
<td>26.11.2 Pseudo-coherent image formation</td>
<td>292</td>
</tr>
<tr>
<td>26.11.3 Synthesis of incoherent matched filters</td>
<td>293</td>
</tr>
<tr>
<td>27 Theory of Image Formation in Partially-Coherent Light</td>
<td>297</td>
</tr>
<tr>
<td>28 Boundary Conditions</td>
<td>309</td>
</tr>
<tr>
<td>28.1 Discontinuities of the Medium</td>
<td>309</td>
</tr>
<tr>
<td>28.2 Consequences of the boundary conditions</td>
<td>312</td>
</tr>
<tr>
<td>29 Interference</td>
<td>317</td>
</tr>
<tr>
<td>29.1 Division of Wavefront and Division of Amplitude</td>
<td>317</td>
</tr>
</tbody>
</table>
30 Coherence

- **30.1 Fundamentals of coherence theory**
- **30.2 Coherence and interference by division of amplitude**
 - 30.2.1 Monochromatic point source
 - 30.2.2 Polychromatic point source
 - 30.2.3 Monochromatic extended source extended perpendicular to the mirror, observed at large \(z \)
 - 30.2.4 Monochromatic extended source extended parallel to mirror, observed at large \(z \)
- **30.3 Tolerances**
- **30.4 Solution of the example # 4, suggested for self-study:**
- **30.5 Coherence — Division of the Wavefront**
 - 30.5.1 Polychromatic point source
 - 30.5.2 Extended monochromatic source
- **30.6 Coherence — division by grating diffraction**
- **30.7 Coherence—Division by a scatter plate**
 - (Jim Burch ~1950)
- **30.8 Partial Coherence in Case of Wavefront Division**
- **30.9 A Final Look at Coherence Theory**
- **30.10 Group velocity**

31 Polarization

- **31.1 Polarization and Crystal Optics**
- **31.2 Some crystal-optical elements**
 - 31.2.1 Quater-wave plate
 - 31.2.2 Half-wave plate
 - 31.2.3 Refraction in the Wollaston prism
 - 31.2.4 Circular birefringence
- **31.3 Compensators**

32 Holography

- **32.1 Rogers’ Explanation**
- **32.2 Discussion of the phase loss**
- **32.3 Generalized Rogers’ Explanation**
- **32.4 Some attempts to remove the twin-image**
- **32.5 Wave Propagation and Fresnel Transformation**
- **32.6 Off-Line Fresnel Holography**
 - 32.6.1 Recording Step
 - 32.6.2 Reconstruction
 - 32.6.3 Theory of Off-Line-Fresnel Holography
 - 32.6.4 Theory of the reconstruction process
 - 32.6.5 About the Pseudoscopic Structure of the Conjugate Image
 - 32.6.6 Why is it so tricky to see the pseudoscopic image?
 - 32.6.7 Dynamic angular velocity
- **32.7 Classification of holographic setups**
 - 32.7.1 Fraunhofer off-line holography
32.7.2 Fourier holography (off-line) ... 402
32.7.3 Lensless Fourier holography ... 403
32.7.4 Image holography ... 407

33 Talbot bands ... 411

34 Influence of the photographic material on spatial data processing 421
34.1 Effects in a Photographic Emulsion 421
34.2 (3) Light Scattering During Recording 421
34.3 (4) The photographic nonlinear effect 424
34.4 (6) Adjacency Effect .. 426
34.5 (5) Grain-Noise ... 428
34.6 The influence of light scattering within the emulsion during holographic record-
ing ... 428
34.6.1 Image holography ... 428
34.6.2 Fourier holography ... 430
34.6.3 Fresnel hologram .. 432

35 The Space-Bandwidth-Product SW 433

36 Appendix — publications reprinted from OSA Journals 459
Theta modulation in optics .. 460
Character recognition by incoherent signal filtering 465
A lateral wavefront shearing interferometry with variable shear 472
Signal detection by correlation of Fresnel diffraction patterns 476
Single-sideband holography .. 481
Interferograms are image holograms 486
Nonlinear effects in holography ... 488

Index ... 499