Loudspeakers
For Music Recording and Reproduction

Philip Newell and Keith Holland
Contents

About the authors xi
Acknowledgements xv
Preface xvii
Introduction xix

Chapter 1 What is a loudspeaker?
1.1 A brief look at the concept 1
1.2 A little history and some background 2
1.3 Some other problems 4
1.4 Some basic facts 5
1.4.1 Acoustic wave propagation 5
1.4.2 Mechanical and acoustic impedance 7
1.4.3 Impedance in loudspeakers 9
1.5 The practical moving-coil cone loudspeaker 9
1.5.1 The combined response 12
1.6 Resistive and reactive loads 14
1.7 The bigger picture 20
References 20
Bibliography 21

Chapter 2 Diversity of design 22
2.1 Moving-coil cone loudspeakers 22
2.1.1 Cones 23
2.1.2 Surrounds 30
2.1.3 Rear suspensions 32
2.1.4 The chassis 34
2.1.5 The voice-coil assembly 35
2.1.6 Magnet systems 36
2.1.7 Ferrofluids 39
2.1.8 The complete system 39
2.2 Dome loudspeakers 40
2.2.1 Hard and soft domes 43
2.3 Compression drivers 45
2.4 Ribbon loudspeakers 48
2.5 Heil air-motion transformers 50
2.6 Distributed mode loudspeakers 51
2.6.1 Panel/piston combinations 55
2.7 Beyond magnetics 56
2.7.1 Piezoelectric devices 57
2.7.2 Ionic loudspeakers 57
2.8 Electrostatic loudspeakers 58
Chapter 3 Loudspeaker cabinets

3.1 The concept of the infinite baffle
3.2 The sealed box
3.2.1 Acoustic suspensions
3.3 Reflex enclosures
3.4 Acoustic labyrinths
3.4.1 Modern transmission lines
3.5 ABR systems
3.6 Bandpass cabinets
3.7 Series driver operation and isobaric loudspeakers
3.8 General discussion
3.9 Cabinet lining materials
3.10 Cabinet constructions
3.11 Cabinet shapes and diffraction effects
3.12 Front grilles
3.13 Cabinet mounting

References

Chapter 4 Horns

4.1 The horn as a transformer
4.2 Directivity control
4.3 Horn design compromises
4.4 Non-linear acoustics
4.5 Examples of non-linear acoustics in loudspeakers
4.6 Practical horns in studios and homes
4.7 Implications for practical horn design parameters
4.8 Summary of results
4.9 General horn characteristics
4.10 Phasing plugs
4.11 Acoustics lenses
4.12 Horn types
4.13 Materials of construction
4.14 Vestigial horns and ‘waveguides’
4.15 Flare rates

References

Chapter 5 Crossovers

5.1 What is a crossover?
5.2 Reconstruction problems
5.3 Orders, slopes and shapes
5.4 Filter shapes
5.5 Target functions
5.5.1 Minimum and non-minimum phase effects
5.5.2 Corrective measures and side-effects
5.6 Active versus passive crossovers

References
5.7 Physical derivation of crossover delay 146
5.8 Digital crossovers 147
References 150
Bibliography 150

Chapter 6 Effects of amplifiers and cables 151
6.1 Amplifiers – an over-view 151
6.2 Basic requirements for current and voltage output 153
6.3 Transient response 154
6.4 Non-linear distortions 157
6.5 Amplifier classes and modes of operation 158
6.5.1 Class A amplifiers 159
6.5.2 Class A derivatives 160
6.5.3 Class AB 161
6.5.4 Class D 161
6.5.5 Class G and H 163
6.6 MOSFET or BJT? 163
6.7 Choosing an amplifier 164
6.8 Loudspeaker cables and their effect on system performance 166
6.8.1 The bare minimum 166
6.8.2 The status quo 168
6.8.3 Cable designs for loudspeaker use 169
6.9 The amplifier/loudspeaker interface 170
6.10 Some provable characteristics of cable performance 174
6.11 Some passing comments 188
6.12 Multi-cabling 191
6.13 Polyamplification and multi-amplification 192
6.14 System design 193
References 194
Bibliography 195

Chapter 7 Loudspeaker behaviour in rooms 196
7.1 The anechoic and reverberation chambers 196
7.2 Boundary loading and room gain 198
7.2.1 Restriction of radiating space 202
7.2.2 The mirrored room and mutual coupling 205
7.3 Room reflexions 206
7.3.1 Resonant modes 209
7.4 Flush-mounting 211
7.5 Multichannel considerations and phantom imaging 212
7.6 Stereo perception in rooms 216
7.7 Rooms for critical listening 217
7.8 Electronic, digitally adaptive response correction 220
7.9 Minimum and non-minimum phase responses 225
References 227
Bibliography 227

Chapter 8 Form follows function 229
8.1 The chain 229
8.2 Recording monitors 230
8.2.1 Basic requirements 233
8.2.2 Proportional costs 237
8.2.3 Different approaches 238
8.2.4 Crossover points 241
8.2.5 Power consideration 245
8.2.6 Interfacing with the rooms 248
8.2.7 A word about listening levels 250
8.3 Mixing monitors 250
8.3.1 Location dilemmas 258
8.4 Mastering loudspeakers 258
8.5 Domestic loudspeakers 263
8.6 Musical instrument loudspeakers 264
8.6.1 Cabinet designs 267
Summary 269
References 269
Bibliography 270

Chapter 9 Subjective and objective assessment 271
9.1 The general situation 271
9.2 Test signals and analysis 272
9.2.1 Frequency response plots 275
9.2.2 Waterfall plots 277
9.2.3 Harmonic distortion 281
9.2.4 Intermodulation distortion 283
9.2.5 Delta-functions and step-functions 288
9.2.6 Acoustic source plots 292
9.2.7 Cepstrum analysis 295
9.2.8 Modulation transfer functions 297
9.2.8.1 Application of room equalisation 298
9.2.8.2 A D-to-A dilemma 301
9.3 Sound fields and human perception 302
9.3.1 Further perceptual considerations 305
References 309
Bibliography 310

Chapter 10 The mix, the music and the monitors 311
10.1 Physics or psychology? 311
10.2 The musical dependence of compatibility 312
10.2.1 Sine waves and pink noise 314
10.3 Real responses vs. preconceived ideas 314
Acknowledgement 319

Chapter 11 Low frequency and transient response dilemmas 320
11.1 The great low frequency deception 320
11.1.1 The air spring 321
11.1.2 Size, weight and sensitivity 324
11.1.3 Further consequences of small size 326
11.2 Commercial solutions 326
11.2.1 The time penalty 327
11.2.2 The transient trade-off 330
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.3</td>
<td>The evolution of the desk-top monitor</td>
<td>333</td>
</tr>
<tr>
<td>11.4</td>
<td>The great time deception</td>
<td>339</td>
</tr>
<tr>
<td>11.5</td>
<td>Resonant tails and one-note bass</td>
<td>339</td>
</tr>
<tr>
<td>11.6</td>
<td>The masking of detail</td>
<td>342</td>
</tr>
<tr>
<td>11.7</td>
<td>Theoretical equalisation and excess phase</td>
<td>343</td>
</tr>
<tr>
<td>11.8</td>
<td>Modulation transfer-function and a new type</td>
<td>345</td>
</tr>
<tr>
<td></td>
<td>of frequency response plot</td>
<td></td>
</tr>
<tr>
<td>11.9</td>
<td>Summing-up</td>
<td>350</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>351</td>
</tr>
</tbody>
</table>

Chapter 12 The challenges of surround sound

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1</td>
<td>Surround sound in professional studios</td>
<td>352</td>
</tr>
<tr>
<td>12.2</td>
<td>Cinema sound</td>
<td>357</td>
</tr>
<tr>
<td>12.3</td>
<td>Music mixing</td>
<td>360</td>
</tr>
<tr>
<td>12.4</td>
<td>Sub-woofers – discrete and managed</td>
<td>362</td>
</tr>
<tr>
<td>12.5</td>
<td>Size versus performance compromises</td>
<td>364</td>
</tr>
<tr>
<td>12.6</td>
<td>Compound sub-woofers and electronic control</td>
<td>368</td>
</tr>
<tr>
<td>12.7</td>
<td>System considerations</td>
<td>372</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>375</td>
</tr>
</tbody>
</table>

Glossary of terms

Index