Alloy Physics

A Comprehensive Reference

Edited by
Wolfgang Pfeiler

WILEY-VCH Verlag GmbH & Co. KGaA
Contents

Preface XIX

Foreword XXI
by Robert W. Cahn

Motto XXIII

List of Contributors XXV

1 Introduction 1
Wolfgang Pfeiler

1.1 The Importance of Alloys at the Beginning of the Third Millennium 1

1.2 Historical Development 5
1.2.1 Historical Perspective 5
1.2.2 The Development of Modern Alloy Science 9

1.3 Atom Kinetics 12

1.4 The Structure of this Book 13

References 18

2 Crystal Structure and Chemical Bonding 19
Yuri Grin, Ulrich Schwarz, and Walter Steurer

2.1 Introduction 19

2.2 Factors Governing Formation, Composition and Crystal Structure of Intermetallic Phases 20

2.2.1 Mappings of Crystal Structure Types 21

2.3 Models of Chemical Bonding in Intermetallic Phases 25
2.3.1 Models Based on the Valence (or Total) Electron Numbers 25

2.3.2 Quantum Mechanical Models for Metallic Structures 29

2.3.3 Electronic Closed-Shell Configurations and Two-Center Two-Electron Bonds in Intermetallic Compounds 31

2.3.3.1 Zintl–Klemm Approach 32
<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.3.2 Extended 8 – N Rule</td>
<td>33</td>
</tr>
<tr>
<td>2.3.3.3 Bonding Models in Direct Space</td>
<td>34</td>
</tr>
<tr>
<td>2.4 Structure Types of Intermetallic Compounds</td>
<td>36</td>
</tr>
<tr>
<td>2.4.1 Classification of the Crystal Structures of Intermetallic</td>
<td></td>
</tr>
<tr>
<td>Compounds</td>
<td>37</td>
</tr>
<tr>
<td>2.4.2 Crystal Structures Derived from the Closest Packings of Equal</td>
<td></td>
</tr>
<tr>
<td>Spheres</td>
<td>37</td>
</tr>
<tr>
<td>2.4.3 Crystal Structures Derived from the Close Packings of Equal</td>
<td></td>
</tr>
<tr>
<td>Spheres</td>
<td>40</td>
</tr>
<tr>
<td>2.4.4 Crystal Structures Derived from the Packings of the Spheres of</td>
<td></td>
</tr>
<tr>
<td>Different Sizes</td>
<td>43</td>
</tr>
<tr>
<td>2.4.5 Selected Crystal Structures with Complex Structural Patterns</td>
<td>44</td>
</tr>
<tr>
<td>2.5 Quasicrystals</td>
<td>48</td>
</tr>
<tr>
<td>2.5.1 Introduction</td>
<td>48</td>
</tr>
<tr>
<td>2.5.2 Quasiperiodic Structures in Direct and Reciprocal Space</td>
<td>50</td>
</tr>
<tr>
<td>2.5.3 Formation and Stability</td>
<td>52</td>
</tr>
<tr>
<td>2.5.4 Structures of Decagonal Quasicrystals (DQCs)</td>
<td>53</td>
</tr>
<tr>
<td>2.5.5 Structures of Icosahedral Quasicrystals</td>
<td>55</td>
</tr>
<tr>
<td>2.6 Outlook</td>
<td>59</td>
</tr>
<tr>
<td>References</td>
<td>60</td>
</tr>
</tbody>
</table>

3 Solidification and Grown-in Defects 63

Thierry Duffar

3.1 Introduction: the Solid–Liquid Interface 63
 3.1.1 Structure of the Solid–Liquid Interface 63
 3.1.2 Kinetics of the Solid–Liquid Interface 65
 3.1.3 Chemistry of the Solid–Liquid Interface: the Segregation Problem 67
 3.1.4 Temperature of the Solid–Liquid Interface 69
 3.2 Solidification Structures 70
 3.2.1 The Interface Stability and Cell Periodicity 71
 3.2.2 Dendrites 74
 3.2.2.1 Different Types of Dendrites 75
 3.2.2.2 Kinetics of Columnar Dendrites 78
 3.2.2.3 Kinetics of Equiaxed Dendrites 81
 3.2.2.4 Characteristic Dimensions of the Dendrite 83
 3.2.2.5 Microsegregation 85
 3.2.3 Rapid Solidification 86
 3.2.3.1 Absolute Stability and Diffusionless Solidification 86
 3.2.3.2 Nonequilibrium Phase Diagrams 87
 3.2.3.3 Structure of the Rapidly Solidified Phase 87
 3.2.4 Eutectic Structures 90
 3.2.4.1 Size of the Eutectic Structure 90
 3.3 Defects in Single and Polycrystals 93
 3.3.1 Defects in Single Crystals 94
3.3.1.1 Point Defects 94
3.3.1.2 Twins 97
3.3.1.3 Grains 98
3.3.2 Grain Structure of an Alloy 101
3.3.2.1 Equiaxed Growth in Presence of Refining Particles 103
3.3.2.2 Columnar to Equiaxed Transition 107
3.3.3 Macro- and Mesosegregation 110
3.4 Outlook 114
References 117

4 Lattice Statics and Lattice Dynamics 119
Véronique Pierron-Bohnes and Tarik Mehaddene

4.1 Introduction: The Binding and Atomic Interaction Energies 119
4.2 Elasticity of Crystalline Lattices 124
4.2.1 Linear Elasticity 125
4.2.2 Elastic Constants 125
4.2.3 Cases of Cubic and Tetragonal Lattices 127
4.2.4 Usual Elastic Moduli 128
4.2.5 Link with Sound Propagation 130
4.3 Lattice Dynamics and Thermal Properties of Alloys 132
4.3.1 Normal Modes of Vibration in the Harmonic Approximation 133
4.3.1.1 Classical Theory 133
4.3.1.2 Diatomic Linear Chain 136
4.3.1.3 Quantum Theory 138
4.3.1.4 Phonon Density of States 141
4.3.1.5 Lattice Specific Heat 143
4.3.1.6 Debye's Model 144
4.3.1.7 Elastic Waves in Cubic Crystals 146
4.3.1.8 Vibrational Entropy 147
4.4 Beyond the Harmonic Approximation 149
4.4.1 Thermal Expansion 150
4.4.2 Thermal Conductivity 151
4.4.3 Soft Phonon Modes and Structural Phase Transition 153
4.5 Experimental Investigation of the Normal Modes of Vibration 156
4.5.1 Raman Spectroscopy 156
4.5.2 Inelastic Neutron Scattering 157
4.6 Phonon Spectra and Migration Energy 160
4.7 Outlook 165
References 168

5 Point Defects, Atom Jumps, and Diffusion 173
Wolfgang Püschl, Hiroshi Numakura, and Wolfgang Pfeiler

5.1 Point Defects 173
5.1.1 A Brief Overview 173
5.1.1.1 Types of Point Defects 173
6 Dislocations and Mechanical Properties 281
Daniel Caillard

6.1 Introduction 281
6.2 Thermally Activated Mechanisms 283
6.2.1 Introduction to Thermal Activation 283
6.2.2 Interactions with Solute Atoms 285
6.2.2.1 General Aspects 285
6.2.2.2 Low Temperatures (Domain 2, Interaction with Fixed Solute Atoms) 286
6.2.2.3 Intermediate Temperatures (Domain 3, Stress Instabilities) 289
6.2.2.4 High Temperatures (Domain 4, Diffusion-Controlled Glide) 291
6.2.3 Forest Mechanism 292
6.2.4 Peierls-Type Friction Forces 293
6.2.4.1 The Kink-Pair Mechanism 293
6.2.4.2 Locking–Unlocking Mechanism 295
6.2.4.3 Transition between Kink-Pair and Locking–Unlocking Mechanisms 297
6.2.4.4 Observations of Peierls-Type Mechanisms 298
6.2.5 Cross-Slip in fcc Metals and Alloys 305
6.2.5.1 Elastic Calculations 305
6.2.5.2 Atomistic Calculations 307
6.2.5.3 Experimental Results 307
6.2.6 Dislocation Climb 309
6.2.6.1 Emission of Vacancies at Jogs 309
6.2.6.2 Diffusion of Vacancies from Jogs 310
6.2.6.3 Jog Density and Jog-Pair Mechanism 311
6.2.6.4 Effect of Over- (Under-) Saturations of Vacancies: Chemical Force 313
6.2.6.5 Stress Dependence of the Dislocation Climb Velocity 314
6.2.6.6 Experimental Results 314
6.2.7 Conclusions on Thermally Activated Mechanisms 316
6.3 Hardening and Recovery 316
6.3.1 Dislocation Multiplication versus Exhaustion 317
6.3.1.1 Dislocation Sources 318
6.3.1.2 Dislocation Exhaustion and Annihilation 320
6.3.2 Dislocation–Dislocation Interaction and Internal Stress: the Taylor Law 321
6.3.3 Hardening Stages in fcc Metals and Alloys 323
6.3.3.1 Stage II (Linear Hardening) 324
6.3.3.2 Stage III 329
6.3.3.3 Stage IV 330
6.3.3.4 Strain-Hardening in Intermetallic Alloys 330
6.4 Complex Behavior 330
6.4.1 Yield Stress Anomalies 330
6.4.1.1 Dynamic Strain Aging 331
Contents

7.3.2 Fluctuations and the Critical Nucleus 384
7.3.3 The Nucleation Rate 387
7.3.4 Time-Dependent Nucleation 391
7.3.5 Effect of Elastic Strain 393
7.3.6 Heterogeneous Nucleation 395
7.3.7 The Kolmogorov–Johnson–Mehl–Avrami Growth Equation 397
7.4 Spinodal Decomposition 399
7.4.1 Concentration Fluctuations and the Free Energy of Solution 400
7.4.2 The Diffusion Equation 402
7.4.3 Effects of Elastic Strain Energy 404
7.5 Martensitic Transformations 406
7.5.1 Characteristics of Martensite 406
7.5.2 Massive and Displacive Transformations 411
7.5.3 Bain Strain Mid-Lattice Invariant Shear 412
7.5.4 Martensite Crystallography 413
7.5.5 Nucleation and Dislocation Models of Martensite 415
7.5.6 Soft Mode Transitions, the Clapp Lattice Instability Model 417
7.6 Outlook 418
References 420

8 Kinetics in Nonequilibrium Alloys 423
Pascal Bellon and Georges Martin

8.1 Relaxation of Nonequilibrium Alloys 424
8.1.1 Coherent Precipitation: Nothing but Solid-State Diffusion 425
8.1.2 Cluster Dynamics, Nucleation Theory, Diffusion Equations: Three Tools for Describing Kinetic Pathways 426
8.1.3 Cluster Dynamics 427
8.1.3.1 Dilute Alloy at Equilibrium 427
8.1.3.2 Fluctuations in the Gas of Clusters at Equilibrium 429
8.1.3.3 Relaxation of a Nonequilibrium Cluster Gas 429
8.1.4 Classical Nucleation Theory 432
8.1.4.1 Summary of CNT 432
8.1.4.2 Source of Fluctuations Consistent with CNT 433
8.1.4.3 A First Application 435
8.1.5 Kinetics of Concentration Fields 436
8.1.6 Conclusion 438
8.2 Driven Alloys 438
8.2.1 Examples of Driven Alloys 439
8.2.1.1 Alloys Subjected to Sustained Irradiation 439
8.2.1.2 Alloys Subjected to Sustained Plastic Deformation 447
8.2.1.3 Alloys Subjected to Sustained Electrochemical Exchanges 449
8.2.2 Identification of the Relevant Control Parameters: Toward a Dynamical Equilibrium Phase Diagram 450
8.2.3 Theoretical Approaches and Simulation Techniques 454
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.2.3.1 Molecular Dynamics Simulations</td>
<td>455</td>
</tr>
<tr>
<td>8.2.3.2 Microscopic Master Equation</td>
<td>456</td>
</tr>
<tr>
<td>8.2.3.3 Kinetic Monte Carlo Simulations</td>
<td>458</td>
</tr>
<tr>
<td>8.2.3.4 Kinetics of Concentration Fields under Irradiation</td>
<td>460</td>
</tr>
<tr>
<td>8.2.3.5 Nucleation Theory under Irradiation</td>
<td>466</td>
</tr>
<tr>
<td>8.2.4 Self-Organization in Driven Alloys: Role of Length Scales of the External Forcing</td>
<td>468</td>
</tr>
<tr>
<td>8.2.4.1 Compositional Patterning under Irradiation</td>
<td>469</td>
</tr>
<tr>
<td>8.2.4.2 Patterning of Chemical Order under Irradiation</td>
<td>478</td>
</tr>
<tr>
<td>8.2.4.3 Compositional Patterning under Plastic Deformation</td>
<td>480</td>
</tr>
<tr>
<td>8.2.5 Practical Applications and Extensions</td>
<td>481</td>
</tr>
<tr>
<td>8.2.5.1 Tribochemical Reactions</td>
<td>483</td>
</tr>
<tr>
<td>8.2.5.2 Pharmaceutical Compounds Synthesized by Mechanical Activation</td>
<td>488</td>
</tr>
<tr>
<td>8.3 Outlook</td>
<td>484</td>
</tr>
<tr>
<td>References</td>
<td>484</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 Change of Alloy Properties under Dimensional Restrictions</td>
<td>491</td>
</tr>
<tr>
<td>Hirotaro Mori and Jung-Goo Lee</td>
<td></td>
</tr>
<tr>
<td>9.1 Introduction</td>
<td>491</td>
</tr>
<tr>
<td>9.2 Instrumentation for in-situ Observation of Phase Transformation of Nanometer-Sized Alloy Particles</td>
<td>492</td>
</tr>
<tr>
<td>9.3 Depression of the Eutectic Temperature and its Relevant Phenomena</td>
<td>494</td>
</tr>
<tr>
<td>9.3.1 Atomic Diffusivity in Nanometer-Sized Particles</td>
<td>494</td>
</tr>
<tr>
<td>9.3.2 Eutectic Temperature in Nanometer-Sized Alloy Particles</td>
<td>496</td>
</tr>
<tr>
<td>9.3.3 Structural Instability</td>
<td>500</td>
</tr>
<tr>
<td>9.3.4 Thermodynamic Discussion</td>
<td>503</td>
</tr>
<tr>
<td>9.3.4.1 Gibbs Free Energy in Nanometer-Sized Alloy Systems</td>
<td>503</td>
</tr>
<tr>
<td>9.3.4.2 Result of Calculations</td>
<td>505</td>
</tr>
<tr>
<td>9.4 Solid/Liquid Two-Phase Microstructure</td>
<td>508</td>
</tr>
<tr>
<td>9.4.1 Solid–Liquid Phase Transition</td>
<td>508</td>
</tr>
<tr>
<td>9.4.2 Two-Phase Microstructure</td>
<td>514</td>
</tr>
<tr>
<td>9.5 Solid Solubility in Nanometer-Sized Alloy Particles</td>
<td>518</td>
</tr>
<tr>
<td>9.6 Summary and Future Perspectives</td>
<td>521</td>
</tr>
<tr>
<td>References</td>
<td>522</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Statistical Thermodynamics and Model Calculations</td>
<td>525</td>
</tr>
<tr>
<td>Tetsuo Mohri</td>
<td></td>
</tr>
<tr>
<td>10.1 Introduction</td>
<td>525</td>
</tr>
<tr>
<td>10.2 Statistical Thermodynamics on a Discrete Lattice</td>
<td>527</td>
</tr>
<tr>
<td>10.2.1 Description of Atomic Configuration</td>
<td>527</td>
</tr>
<tr>
<td>10.2.2 Internal Energy</td>
<td>534</td>
</tr>
<tr>
<td>10.2.3 Entropy and Cluster Variation Method</td>
<td>536</td>
</tr>
</tbody>
</table>
10.2.4 Free Energy 542
10.2.5 Relative Stability and Intrinsic Stability 544
10.2.6 Atomistic Kinetics by the Path Probability Method 549
10.3 Statistical Thermodynamics on Continuous Media 552
10.3.1 Ginzburg–Landau Free Energy 552
10.3.2 Diffusion Equation and Time-Dependent Ginzburg–Landau Equation 554
10.3.3 Width of an Interface 557
10.3.4 Interface Velocity 559
10.4 Model Calculations 560
10.4.1 Calculation of a Phase Diagram 561
10.4.1.1 Ground-State Analysis 561
10.4.1.2 Effective Cluster Interaction Energy 564
10.4.1.3 Phase Diagram 568
10.4.2 Microstructural Evolution Calculated by the Phase Field Method 572
10.4.2.1 Hybrid Model 572
10.4.2.2 Toward the First-Principles Phase Field Calculation 576
10.5 Future Scope and Outlook 580
10.6 Appendix: CALPHAD Free Energy 582

References 585

11 Ab-Initio Methods and Applications 589
Stefan Müller, Walter Wolf, and Raimund Podloucky

11.1 Introduction 589
11.2 Theoretical Background 590
11.2.1 Density Functional Theory 590
11.2.2 Computational Methods 594
11.2.3 Elastic Properties 598
11.2.4 Vibrational Properties 601
11.3 Applications 606
11.3.1 Structural and Phase Stability 606
11.3.2 Point Defects 612
11.3.3 Diffusion Processes 616
11.3.4 Impurity Effects on Grain Boundary Cohesion 622
11.3.5 Toward Multiscale Modeling: Cluster Expansion 625
11.3.6 Search for Ground-State Structures 639
11.3.7 Ordering and Decomposition Phenomena in Binary Alloys 641
11.4 Outlook 648
References 649

12 Simulation Techniques 653
Ferdinand Haider, Rafal Kozubski, and T.A. Abinandanan

12.1 Introduction 653
12.2 Molecular Dynamics Simulations 654
12.2.1 Basic Ideas 654
12.2.2 Atomic Interaction, Potential Models 656
12.2.2.1 Pairwise Interaction 656
12.2.2.2 Many-Body Potentials, the EAM Method 657
12.2.3 Practical Considerations 659
12.2.4 Different Thermodynamic Ensembles: Thermostats, Barostats 659
12.2.5 Implementation of MD Algorithms 661
12.2.6 Practical Aspects: Time Steps 662
12.2.7 Evaluation of Data: Use of Correlation Functions 662
12.2.8 Applications to Alloys, Alloy Dynamics, and Alloy Kinetics 664
12.3 Monte Carlo Simulations 667
12.3.1 Foundations of Stochastic Processes – Markov Chains and the Master Equation 667
12.3.2 The Idea of Sampling 668
12.3.3 Markov Chains as a Tool for Importance Sampling 670
12.3.4 General Applicability 671
12.3.4.1 Simulation and Characterization of System Properties in Thermodynamic Equilibrium 671
12.3.4.2 Simulation of Relaxation Processes Toward Equilibrium 673
12.3.4.3 Simulation of Nonequilibrium Processes and Transport Phenomena 673
12.3.5 Limitations: Finite-Size Effects and Boundary Conditions 674
12.3.6 Numerical Implementation of MC 675
12.3.6.1 Classical Realization of Markov Chains 675
12.3.6.2 “Residence Time” Algorithm 676
12.3.6.3 The Problem of Time Scales 677
12.3.7 Applications to Alloys 678
12.3.7.1 General Assumptions 678
12.3.7.2 Physical Model of an Alloy 679
12.3.8 Practical Aspects 681
12.3.9 Review of Current Applications in Studies of Alloys 682
12.3.9.1 Computation of Phase Diagrams using Grandcanonical Ensemble 683
12.3.9.2 Reverse and Inverse Monte Carlo Methods: from Experimental SRO Parameters to Atomic Interaction Energies 683
12.3.10 Going beyond the Ising Model and Rigid-Lattice Simulations 685
12.3.11 Monte Carlo Simulations in View of other Techniques of Alloy Modeling 686
12.4 Phase Field Models 686
12.4.1 Introduction 686
12.4.2 Cahn–Hilliard Model 687
12.4.2.1 Energetics 687
12.4.2.2 Interfacial Energy and Width 689
12.4.2.3 Dynamics 691
12.4.3 Numerical Implementation 691
12.4.4 Application: Spinodal Decomposition 693
12.4.5 Cahn–Allen Model 694
12.4.5.1 Kinetics 695
12.4.6 Generalized Phase Field Models 696
12.4.6.1 Key Features of Phase Field Models 696
12.4.6.2 Precipitation of an Ordered Phase 697
12.4.6.3 Grain Growth in Polycrystals 698
12.4.6.4 Solidification 700
12.4.7 Other Topics 700
12.4.7.1 Anisotropy in Interfacial Energy 700
12.4.7.2 Elastic Strain Energy 701
12.5 Outlook 702
Appendix 702
References 703

13 High-Resolution Experimental Methods 707

13.1 High-Resolution Scattering Methods and Time-Resolved Diffraction 707
Bogdan Sepiol and Karl F. Ludwig

13.1.2 Magnetic Scattering 710
13.1.2.1 Magnetic Neutron Scattering 710
13.1.2.2 Magnetic X-Ray Scattering 715
13.1.3 Spectroscopy 721
13.1.3.1 Coherent Time-Resolved X-Ray Scattering 722
13.1.3.1.1 Homodyne X-Ray Studies of Equilibrium Fluctuation Dynamics 723
13.1.3.1.2 Heterodyne X-Ray Studies of Equilibrium Fluctuation Dynamics 725
13.1.3.1.3 Studies of Critical Fluctuations with Microbeams 726
13.1.3.1.4 Coherent X-Ray Studies of the Kinetics of Nonequilibrium Systems 726
13.1.3.1.5 Coherent X-Ray Studies of Microscopic Reversibility 729
13.1.3.2 Phonon Excitations 729
13.1.3.2.1 Inelastic X-Ray Scattering 730
13.1.3.2.2 Nuclear Inelastic Scattering 732
13.1.3.3 Quasielastic Scattering: Diffusion 733
13.1.3.3.1 Quasielastic Methods: Mössbauer Spectroscopy and Neutron Scattering 738
13.1.3.3.2 Nuclear Resonant Scattering of Synchrotron Radiation 741
13.1.3.3.3 Pure Metals and Dilute Alloys 743
13.1.3.3.4 Ordered Alloys 744
13.1.3.3.5 Amorphous Materials 745
13.1.4 Time-Resolved Scattering 749
13.1.4.1 Technical Capabilities 750
13.1.4.2 Time-Resolved Studies – Examples 751
13.1.5 Diffuse Scattering from Disordered Alloys 756
13.1.5.1 Metallic Glasses and Liquids 757
13.1.5.2 Diffuse Scattering from Disordered Crystalline Alloys 759
13.1.6 Surface Scattering – Atomic Segregation and Ordering near Surfaces 762
13.1.7 Scattering from Quasicrystals 763
13.1.8 Outlook 764
References 765

13.2 High-Resolution Microscopy 774
Guido Schmitz and James M. Howe
13.2.1 Surface Analysis by Scanning Probe Microscopy 775
13.2.1.1 Functional Principle of Scanning Tunneling and Atomic Force Microscopy 776
13.2.1.2 Modes of Measurement in AFM 779
13.2.1.3 Cantilever Design for the AFM 781
13.2.1.4 Exemplary Studies by Scanning Probe Microscopy 783
13.2.1.4.1 Chemical Contrast by STM and Surface Ordering 783
13.2.1.4.2 Microstructure Characterization and Surface Topology by AFM 785
13.2.1.4.3 Imaging of Nanomagnets by Magnetic Force Microscopy 789
13.2.2 High-Resolution Transmission Electron Microscopy and Related Techniques 791
13.2.2.1 Principles of Image Formation in and Practical Aspects of High-Resolution Transmission Electron Microscopy 793
13.2.2.1.1 Principles of Image Formation 793
13.2.2.1.2 Practical Aspects of HRTEM 796
13.2.2.2 In-Situ Hot-Stage High-Resolution Transmission Electron Microscopy 797
13.2.2.3 Examples of HRTEM Studies of Dislocation and Interphase Boundaries 799
13.2.2.3.1 Disclinations in Mechanically Milled Fe Powder 799
13.2.2.3.2 Interphase Boundaries in Metal Alloys 802
13.2.2.3.3 Diffuse Interface in Cu–Au 802
13.2.2.3.4 Partly Coherent Interfaces in Al–Cu 807
13.2.2.3.5 Incoherent Interfaces in Ti–Al 811
13.2.3 Local Analysis by Atom Probe Tomography 817
13.2.3.1 The Functional Principle of Atom Probe Tomography 819
13.2.3.2 Two-Dimensional Single-Ion Detector Systems 823
13.2.3.3 Ion Trajectories and Image Magnification 827
13.2.3.4 Tomographic Reconstruction 830
13.2.3.5 Accuracy of the Reconstruction 833
13.2.3.6 Specimen Preparation 836
13.2.3.7 Examples of Studies by Atom Probe Tomography 837
14.2 Invar Alloys 885
Peter Mohn
14.2.1 Introduction and General Remarks 885
14.2.2 Spontaneous Volume Magnetostriction 888
14.2.3 The Modeling of Invar Properties 889
14.2.4 A Microscopic Model 893
14.2.5 Outlook 894
References 895

14.3 Magnetic Media 895
Laurent Ranno
14.3.1 Data Storage 895
14.3.1.1 Information Storage 895
Contents

14.3.1.2 Competing Physical Effects 896
14.3.1.3 Magnetic Storage 897
14.3.2 Magnetic Recording Media 905
14.3.2.1 Particulate Media 905
14.3.2.2 Continuous Media – Film Media 906
14.3.2.3 Perpendicular Recording 907
14.3.3 Outlook 909
Further Reading 910

14.4 Spin Electronics (Spintronics) 911
Laurent Ranno
14.4.1 Electrical Transport in Conductors 911
14.4.1.1 Conventional Transport 911
14.4.1.2 Role of Disorder 913
14.4.1.3 Transport in Magnetic Conductors 914
14.4.2 Magnetoresistance 915
14.4.2.1 Cyclotron Magnetoresistance 916
14.4.2.2 Anisotropic Magnetoresistance (AMR) 916
14.4.2.3 Giant MR (GMR) and Tunnel MR (TMR) 916
14.4.2.4 Magnetic Field Sensors 918
14.4.2.5 Magnetic RAM 920
14.4.3 Outlook 921
Further Reading 921

14.5 Phase-Change Media 921
Takeo Ohta
14.5.1 Electrically and Optically Induced Writing and Erasing Processes 921
14.5.2 Phase-Change Dynamic Model 925
14.5.3 Alternative Functions 933
14.5.4 Outlook 938
References 938

14.6 Superconductors 939
Harald W. Weber
14.6.1 Fundamentals 939
14.6.2 Superconducting Materials 944
14.6.3 Technical Superconductors 946
14.6.4 Applications 952
Further Reading 953

Index 955