Contents

Foreword xix
Preface xxi

Chapter I Introduction 1
1.1 What Motivated Data Mining? Why Is It Important? 1
1.2 So, What Is Data Mining? 5
1.3 Data Mining—On What Kind of Data? 9
1.3.1 Relational Databases 10
1.3.2 Data Warehouses 12
1.3.3 Transactional Databases 14
1.3.4 Advanced Data and Information Systems and Advanced Applications 15
1.4 Data Mining Functionalities—What Kinds of Patterns Can Be Mined? 21
1.4.1 Concept/Class Description: Characterization and Discrimination 21
1.4.2 Mining Frequent Patterns, Associations, and Correlations 23
1.4.3 Classification and Prediction 24
1.4.4 Cluster Analysis 25
1.4.5 Outlier Analysis 26
1.4.6 Evolution Analysis 27
1.5 Are All of the Patterns Interesting? 27
1.6 Classification of Data Mining Systems 29
1.7 Data Mining Task Primitives 31
1.8 Integration of a Data Mining System with a Database or Data Warehouse System 34
1.9 Major Issues in Data Mining 36
Chapter 2: Data Preprocessing

2.1 Why Preprocess the Data? 48
2.2 Descriptive Data Summarization 51
 - Measuring the Central Tendency 51
 - Measuring the Dispersion of Data 53
 - Graphic Displays of Basic Descriptive Data Summaries 56
2.3 Data Cleaning 61
 - Missing Values 61
 - Noisy Data 62
 - Data Cleaning as a Process 65
2.4 Data Integration and Transformation 67
 - Data Integration 67
 - Data Transformation 70
2.5 Data Reduction 72
 - Data Cube Aggregation 73
 - Attribute Subset Selection 75
 - Dimensionality Reduction 77
 - Numerosity Reduction 80
2.6 Discretization and Concept Hierarchy Generation 86
 - Discretization and Concept Hierarchy Generation for Numerical Data 88
 - Concept Hierarchy Generation for Categorical Data 94
2.7 Summary 97
Exercises 97
Bibliographic Notes 101

Chapter 3: Data Warehouse and OLAP Technology: An Overview

3.1 What Is a Data Warehouse? 105
 - Differences between Operational Database Systems and Data Warehouses 108
 - But, Why Have a Separate Data Warehouse? 109
3.2 A Multidimensional Data Model 110
 - From Tables and Spreadsheets to Data Cubes 110
 - Stars, Snowflakes, and Fact Constellations: Schemata for Multidimensional Databases 114
 - Examples for Defining Star, Snowflake, and Fact Constellation Schemata 117
3.2.4 Measures: Their Categorization and Computation 119
3.2.5 Concept Hierarchies 121
3.2.6 OLAP Operations in the Multidimensional Data Model 123
3.2.7 A Starnet Query Model for Querying Multidimensional Databases 126

3.3 **Data Warehouse Architecture** 127
3.3.1 Steps for the Design and Construction of Data Warehouses 128
3.3.2 A Three-Tier Data Warehouse Architecture 130
3.3.3 Data Warehouse Back-End Tools and Utilities 134
3.3.4 Metadata Repository 134
3.3.5 Types of OLAP Servers: ROLAP versus MOLAP versus HOLAP 135

3.4 **Data Warehouse Implementation** 137
3.4.1 Efficient Computation of Data Cubes 137
3.4.2 Indexing OLAP Data 141
3.4.3 Efficient Processing of OLAP Queries 144

3.5 **From Data Warehousing to Data Mining** 146
3.5.1 Data Warehouse Usage 146
3.5.2 From On-Line Analytical Processing to On-Line Analytical Mining 148

3.6 **Summary** 150

Exercises 152

Bibliographic Notes 154

Chapter 4 **Data Cube Computation and Data Generalization** 157

4.1 **Efficient Methods for Data Cube Computation** 157
4.1.1 A Road Map for the Materialization of Different Kinds of Cubes 158
4.1.2 Multiway Array Aggregation for Full Cube Computation 164
4.1.3 BUC: Computing Iceberg Cubes from the Apex Cuboid Downward 168
4.1.4 Star-cubing: Computing Iceberg Cubes Using a Dynamic Star-tree Structure 173
4.1.5 Precomputing Shell Fragments for Fast High-Dimensional OLAP 178
4.1.6 Computing Cubes with Complex Iceberg Conditions 187

4.2 **Further Development of Data Cube and OLAP Technology** 189
4.2.1 Discovery-Driven Exploration of Data Cubes 189
4.2.2 Complex Aggregation at Multiple Granularity: Multifeature Cubes 192
4.2.3 Constrained Gradient Analysis in Data Cubes 195
4.3 Attribute-Oriented Induction—An Alternative Method for Data Generalization and Concept Description 198
4.3.1 Attribute-Oriented Induction for Data Characterization 199
4.3.2 Efficient Implementation of Attribute-Oriented Induction 205
4.3.3 Presentation of the Derived Generalization 206
4.3.4 Mining Class Comparisons: Discriminating between Different Classes 210
4.3.5 Class Description: Presentation of Both Characterization and Comparison 215

4.4 Summary 218
Exercises 219
Bibliographic Notes 223

Chapter 5 Mining Frequent Patterns, Associations, and Correlations 227

5.1 Basic Concepts and a Road Map 227
5.1.1 Market Basket Analysis: A Motivating Example 228
5.1.2 Frequent Itemsets, Closed Itemsets, and Association Rules 230
5.1.3 Frequent Pattern Mining: A Road Map 232

5.2 Efficient and Scalable Frequent Itemset Mining Methods 234
5.2.1 The Apriori Algorithm: Finding Frequent Itemsets Using Candidate Generation 234
5.2.2 Generating Association Rules from Frequent Itemsets 239
5.2.3 Improving the Efficiency of Apriori 240
5.2.4 Mining Frequent Itemsets without Candidate Generation 242
5.2.5 Mining Frequent Itemsets Using Vertical Data Format 245
5.2.6 Mining Closed Frequent Itemsets 248

5.3 Mining Various Kinds of Association Rules 250
5.3.1 Mining Multilevel Association Rules 250
5.3.2 Mining Multidimensional Association Rules from Relational Databases and Data Warehouses 254

5.4 From Association Mining to Correlation Analysis 259
5.4.1 Strong Rules Are Not Necessarily Interesting: An Example 260
5.4.2 From Association Analysis to Correlation Analysis 261

5.5 Constraint-Based Association Mining 265
5.5.1 Metarule-Guided Mining of Association Rules 266
5.5.2 Constraint Pushing: Mining Guided by Rule Constraints 267

5.6 Summary 272
Exercises 274
Bibliographic Notes 280
Chapter 6 Classification and Prediction 285

6.2 Issues Regarding Classification and Prediction 289

6.2.1 Preparing the Data for Classification and Prediction 289
6.2.2 Comparing Classification and Prediction Methods 290

6.3 Classification by Decision Tree Induction 291

6.3.1 Decision Tree Induction 292
6.3.2 Attribute Selection Measures 296
6.3.3 Tree Pruning 304
6.3.4 Scalability and Decision Tree Induction 306

6.4 Bayesian Classification 310

6.4.1 Bayes' Theorem 310
6.4.2 Naïve Bayesian Classification 311
6.4.3 Bayesian Belief Networks 315
6.4.4 Training Bayesian Belief Networks 317

6.5 Rule-Based Classification 318

6.5.1 Using IF-THEN Rules for Classification 319
6.5.2 Rule Extraction from a Decision Tree 321
6.5.3 Rule Induction Using a Sequential Covering Algorithm 322

6.6 Classification by Backpropagation 327

6.6.1 A Multilayer Feed-Forward Neural Network 328
6.6.2 Defining a Network Topology 329
6.6.3 Backpropagation 329
6.6.4 Inside the Black Box: Backpropagation and Interpretability 334

6.7 Support Vector Machines 337

6.7.1 The Case When the Data Are Linearly Separable 337
6.7.2 The Case When the Data Are Linearly Inseparable 342

6.8 Associative Classification: Classification by Association Rule Analysis 344

6.9 Lazy Learners (or Learning from Your Neighbors) 347

6.9.1 k-Nearest-Neighbor Classifiers 348
6.9.2 Case-Based Reasoning 350

6.10 Other Classification Methods 351

6.10.1 Genetic Algorithms 351
6.10.2 Rough Set Approach 351
6.10.3 Fuzzy Set Approaches 352

6.11 Prediction 354

6.11.1 Linear Regression 355
6.11.2 Nonlinear Regression 357
6.11.3 Other Regression-Based Methods 358
6.12 **Accuracy and Error Measures** 359
 6.12.1 Classifier Accuracy Measures 360
 6.12.2 Predictor Error Measures 362

6.13 **Evaluating the Accuracy of a Classifier or Predictor** 363
 6.13.1 Holdout Method and Random Subsampling 364
 6.13.2 Cross-validation 364
 6.13.3 Bootstrap 365

6.14 **Ensemble Methods—Increasing the Accuracy** 366
 6.14.1 Bagging 366
 6.14.2 Boosting 367

6.15 **Model Selection** 370
 6.15.1 Estimating Confidence Intervals 370
 6.15.2 ROC Curves 372

6.16 **Summary** 373

Exercises 375

Bibliographic Notes 378

Chapter 7 **Cluster Analysis** 383

7.1 **What Is Cluster Analysis?** 383

7.2 **Types of Data in Cluster Analysis** 386
 7.2.1 Interval-Scaled Variables 387
 7.2.2 Binary Variables 389
 7.2.3 Categorical, Ordinal, and Ratio-Scaled Variables 392
 7.2.4 Variables of Mixed Types 395
 7.2.5 Vector Objects 397

7.3 **A Categorization of Major Clustering Methods** 398

7.4 **Partitioning Methods** 401
 7.4.1 Classical Partitioning Methods: \(k \)-Means and \(k \)-Medoids 402
 7.4.2 Partitioning Methods in Large Databases: From \(k \)-Medoids to CLARANS 407

7.5 **Hierarchical Methods** 408
 7.5.1 Agglomerative and Divisive Hierarchical Clustering 408
 7.5.2 BIRCH: Balanced Iterative Reducing and Clustering Using Hierarchies 412
 7.5.3 ROCK: A Hierarchical Clustering Algorithm for Categorical Attributes 414
 7.5.4 Chameleon: A Hierarchical Clustering Algorithm Using Dynamic Modeling 416

7.6 **Density-Based Methods** 418
 7.6.1 DBSCAN: A Density-Based Clustering Method Based on Connected Regions with Sufficiently High Density 418
Contents

7.6.2 OPTICS: Ordering Points to Identify the Clustering Structure 420
7.6.3 DENCLUE: Clustering Based on Density Distribution Functions 422
7.7 Grid-Based Methods 424
7.7.1 STING: STatistical INformation Grid 425
7.7.2 WaveCluster: Clustering Using Wavelet Transformation 427
7.8 Model-Based Clustering Methods 429
7.8.1 Expectation-Maximization 429
7.8.2 Conceptual Clustering 431
7.8.3 Neural Network Approach 433
7.9 Clustering High-Dimensional Data 434
7.9.1 CLIQUE: A Dimension-Growth Subspace Clustering Method 436
7.9.2 PROCLUS: A Dimension-Reduction Subspace Clustering Method 439
7.9.3 Frequent Pattern-Based Clustering Methods 440
7.10 Constraint-Based Cluster Analysis 444
7.10.1 Clustering with Obstacle Objects 446
7.10.2 User-Constrained Cluster Analysis 448
7.10.3 Semi-Supervised Cluster Analysis 449
7.11 Outlier Analysis 451
7.11.1 Statistical Distribution-Based Outlier Detection 452
7.11.2 Distance-Based Outlier Detection 454
7.11.3 Density-Based Local Outlier Detection 455
7.11.4 Deviation-Based Outlier Detection 458
7.12 Summary 460
Exercises 461
Bibliographic Notes 464

Chapter 8 Mining Stream, Time-Series, and Sequence Data 467
8.1 Mining Data Streams 468
8.1.1 Methodologies for Stream Data Processing and Stream Data Systems 469
8.1.2 Stream OLAP and Stream Data Cubes 474
8.1.3 Frequent-Pattern Mining in Data Streams 479
8.1.4 Classification of Dynamic Data Streams 481
8.1.5 Clustering Evolving Data Streams 486
8.2 Mining Time-Series Data 489
8.2.1 Trend Analysis 490
8.2.2 Similarity Search in Time-Series Analysis 493
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3</td>
<td>Mining Sequence Patterns in Transactional Databases</td>
<td>498</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Sequential Pattern Mining: Concepts and Primitives</td>
<td>498</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Scalable Methods for Mining Sequential Patterns</td>
<td>500</td>
</tr>
<tr>
<td>8.3.3</td>
<td>Constraint-Based Mining of Sequential Patterns</td>
<td>509</td>
</tr>
<tr>
<td>8.3.4</td>
<td>Periodicity Analysis for Time-Related Sequence Data</td>
<td>512</td>
</tr>
<tr>
<td>8.4</td>
<td>Mining Sequence Patterns in Biological Data</td>
<td>513</td>
</tr>
<tr>
<td>8.4.1</td>
<td>Alignment of Biological Sequences</td>
<td>514</td>
</tr>
<tr>
<td>8.4.2</td>
<td>Hidden Markov Model for Biological Sequence Analysis</td>
<td>518</td>
</tr>
<tr>
<td>8.5</td>
<td>Summary</td>
<td>527</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>528</td>
</tr>
<tr>
<td></td>
<td>Bibliographic Notes</td>
<td>531</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Graph Mining, Social Network Analysis, and Multirelational Data Mining</td>
<td>535</td>
</tr>
<tr>
<td>9.1</td>
<td>Graph Mining</td>
<td>535</td>
</tr>
<tr>
<td>9.1.1</td>
<td>Methods for Mining Frequent Subgraphs</td>
<td>536</td>
</tr>
<tr>
<td>9.1.2</td>
<td>Mining Variant and Constrained Substructure Patterns</td>
<td>545</td>
</tr>
<tr>
<td>9.1.3</td>
<td>Applications: Graph Indexing, Similarity Search, Classification, and Clustering</td>
<td>551</td>
</tr>
<tr>
<td>9.2</td>
<td>Social Network Analysis</td>
<td>556</td>
</tr>
<tr>
<td>9.2.1</td>
<td>What Is a Social Network?</td>
<td>556</td>
</tr>
<tr>
<td>9.2.2</td>
<td>Characteristics of Social Networks</td>
<td>557</td>
</tr>
<tr>
<td>9.2.3</td>
<td>Link Mining: Tasks and Challenges</td>
<td>561</td>
</tr>
<tr>
<td>9.2.4</td>
<td>Mining on Social Networks</td>
<td>565</td>
</tr>
<tr>
<td>9.3</td>
<td>Multirelational Data Mining</td>
<td>571</td>
</tr>
<tr>
<td>9.3.1</td>
<td>What Is Multirelational Data Mining?</td>
<td>571</td>
</tr>
<tr>
<td>9.3.2</td>
<td>ILP Approach to Multirelational Classification</td>
<td>573</td>
</tr>
<tr>
<td>9.3.3</td>
<td>Tuple ID Propagation</td>
<td>575</td>
</tr>
<tr>
<td>9.3.4</td>
<td>Multirelational Classification Using Tuple ID Propagation</td>
<td>577</td>
</tr>
<tr>
<td>9.3.5</td>
<td>Multirelational Clustering with User Guidance</td>
<td>580</td>
</tr>
<tr>
<td>9.4</td>
<td>Summary</td>
<td>584</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>586</td>
</tr>
<tr>
<td></td>
<td>Bibliographic Notes</td>
<td>587</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Mining Object, Spatial, Multimedia, Text, and Web Data</td>
<td>591</td>
</tr>
<tr>
<td>10.1</td>
<td>Multidimensional Analysis and Descriptive Mining of Complex Data Objects</td>
<td>591</td>
</tr>
<tr>
<td>10.1.1</td>
<td>Generalization of Structured Data</td>
<td>592</td>
</tr>
<tr>
<td>10.1.2</td>
<td>Aggregation and Approximation in Spatial and Multimedia Data Generalization</td>
<td>593</td>
</tr>
</tbody>
</table>
10.1.3 Generalization of Object Identifiers and Class/Subclass Hierarchies 594
10.1.4 Generalization of Class Composition Hierarchies 595
10.1.5 Construction and Mining of Object Cubes 596
10.1.6 Generalization-Based Mining of Plan Databases by Divide-and-Conquer 596

10.2 Spatial Data Mining 600
10.2.1 Spatial Data Cube Construction and Spatial OLAP 601
10.2.2 Mining Spatial Association and Co-location Patterns 605
10.2.3 Spatial Clustering Methods 606
10.2.4 Spatial Classification and Spatial Trend Analysis 606
10.2.5 Mining Raster Databases 607

10.3 Multimedia Data Mining 607
10.3.1 Similarity Search in Multimedia Data 608
10.3.2 Multidimensional Analysis of Multimedia Data 609
10.3.3 Classification and Prediction Analysis of Multimedia Data 611
10.3.4 Mining Associations in Multimedia Data 612
10.3.5 Audio and Video Data Mining 613

10.4 Text Mining 614
10.4.1 Text Data Analysis and Information Retrieval 615
10.4.2 Dimensionality Reduction for Text 621
10.4.3 Text Mining Approaches 624

10.5 Mining the World Wide Web 628
10.5.1 Mining the Web Page Layout Structure 630
10.5.2 Mining the Web's Link Structures to Identify Authoritative Web Pages 631
10.5.3 Mining Multimedia Data on the Web 637
10.5.4 Automatic Classification of Web Documents 638
10.5.5 Web Usage Mining 640

10.6 Summary 641
Exercises 642
Bibliographic Notes 645

Chapter 11 Applications and Trends in Data Mining 649
11.1 Data Mining Applications 649
11.1.1 Data Mining for Financial Data Analysis 649
11.1.2 Data Mining for the Retail Industry 651
11.1.3 Data Mining for the Telecommunication Industry 652
11.1.4 Data Mining for Biological Data Analysis 654
11.1.5 Data Mining in Other Scientific Applications 657
11.1.6 Data Mining for Intrusion Detection 658