Contents

Preface
List of symbols
List of acronyms

Part I Theory

1 The problem of the structure of matter
 1.1 Adiabatic approximation
 1.2 Classical nuclei approximation

2 The electronic problem
 2.1 Screening: Gouy–Chapman and Debye–Hückel analysis
 2.2 The pair correlation function
 2.3 Many-body theory of electronic systems

3 Quantum many-body theory: chemical approaches
 3.1 The Hartree–Fock approximation
 3.2 Post-Hartree–Fock methods

4 Density functional theory
 4.1 Thomas–Fermi theory
 4.2 Modern density functional theory
 4.3 Kinetic correlation: the adiabatic connection
 4.4 Some observations about Kohn–Sham theory

5 Exchange and correlation in DFT: approximations and their performances
 5.1 The local density approximation
 5.2 Gradient expansions
 5.3 Non-locality: the weighted density approximation
Contents

Part I Exchange-correlation functionals

5.4 Hybrid HF-KS approaches
5.5 Exact exchange: the optimized effective potential method
5.6 Orbital-dependent correlation functionals
5.7 Van der Waals (dispersion) interactions
5.8 Green’s function approach: the GW approximation
5.9 Strong correlations: LDA+U and LDA+DMFT
5.10 Summary of exchange-correlation functionals

Part II Computational methods

6 Solving the electronic problem in practice

6.1 Kohn–Sham and Hartree–Fock equations
6.2 Condensed phases: Bloch’s theorem and periodic boundary conditions

7 Atomic pseudopotentials

7.1 Pseudopotential theory
7.2 Construction of pseudopotentials
7.3 Separable form of atomic pseudopotentials
7.4 Ultrasoft pseudopotentials
7.5 Some practical aspects of pseudopotentials

8 Basis sets

8.1 Periodic systems
8.2 Plane waves
8.3 Other floating basis sets
8.4 Atom-centered basis sets
8.5 Mixed basis sets
8.6 Augmented basis sets

9 Electronic structure methods

9.1 Multiple scattering methods: the KKR approach
9.2 All-electron methods based on augmentation spheres
9.3 The pseudopotential plane wave method (PPW)
9.4 Atom-centered basis sets
9.5 Gaussian basis sets

10 Simplified approaches to the electronic problem

10.1 Tight-binding methods
10.2 Semiempirical approaches in quantum chemistry
10.3 Relation between tight-binding and semiempirical methods
10.4 Many-body classical potentials
Contents

10.5 Classical force fields 298
10.6 Hybrid QM-MM methods 300
10.7 Orbital-free density functional approaches 304

11 Diagonalization and electronic self-consistency 311
11.1 Diagonalization 312
11.2 Self-consistency: mixing schemes 316
11.3 Direct minimization of the electronic energy functional 318

12 First-principles molecular dynamics (Car–Parrinello) 323
12.1 Density functional molecular dynamics 324
12.2 The Car–Parrinello Lagrangian 325
12.3 The Car–Parrinello equations of motion 328
12.4 Orthonormalization 330
12.5 Pre-conditioning 332
12.6 Performance of CPMD 333

Index 339