Nanotechnologies for the Life Sciences
Volume 5

Nanomaterials – Toxicity, Health
and Environmental Issues

Edited by
Challa S. S. R. Kumar

1st Edition
Contents

Preface XII

List of Authors XVI

1 Toxicity 1

1 Biototoxicity of Metal Oxide Nanoparticles 3
 Amanda M. Fond and Gerald J. Meyer

1.1 Introduction 3
1.2 Nanoparticles in the Environment 5
1.3 How Nanoparticles are Introduced into Mammalian Systems 7
1.4 Health Threats 8
1.5 Nanomaterials and Biotoxicity 9
1.5.1 Iron Oxide 9
1.5.2 Titanium Dioxide 13
1.5.2.1 Dark Studies 14
1.5.2.2 UV Irradiation Studies 18
1.5.3 Other Metal Oxides 25
1.6 Conclusions 28
 Acknowledgment 29
 References 29

2 Ecotoxicity of Engineered Nanomaterials 35
 Eva Oberdörster, Patricia McClellan-Green, and Mary Haasch

2.1 Introduction 35
2.2 Water 38
2.3 Air 42
2.4 Soils 42
2.5 Weathering 43
2.6 Biomarkers 44
2.7 Conclusions 46
 References 47

Nanotechnologies for the Life Sciences Vol. 5
Nanomaterials – Toxicity, Health and Environmental Issues. Edited by Challa S. S. R. Kumar
Copyright © 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-31385-0
3 Possible Health Impact of Nanomaterials 53
Peter H. M. Hoet, Irene Brüseke-Hohlfeld, and Oleg V. Salata
3.1 Introduction 53
3.2 Sources of Nanoparticles 53
3.3 Epidemiological Evidence 54
3.4 Entry Routes into the Human Body 56
3.4.1 Lung 57
3.4.1.1 Inhalation, Deposition and Pulmonary Clearing of Insoluble Solids 57
3.4.1.2 Biopersistence of Inhaled Solid Material 59
3.4.1.3 Systemic Translocation of Inhaled Particles 60
3.4.2 Intestinal Tract 61
3.4.2.1 Deposition and Translocation 61
3.4.2.2 Intestinal Translocation and Disease 62
3.4.3 Skin 62
3.4.3.1 Deposition and Penetration through the Skin 62
3.4.3.2 Irritation of Skin 64
3.5 What Makes Nanoparticles Dangerous? 64
3.5.1 Particle Size – Surface and Body Distribution 65
3.5.1.1 Effect of Size 65
3.5.1.2 Effect of Surface Charges 65
3.5.2 Nanoparticles, Thrombosis and Lung Inflammation 67
3.5.2.1 Prothrombotic Effect 67
3.5.2.2 Oxidative Stress, Inflammation and Endotoxins 68
3.5.3 Nanoparticles and Cellular Uptake 69
3.5.4 Nanoparticles and the Blood–Brain Barrier 69
3.6 Summary and Discussion 69
3.7 What Can be Done? 71
References 72

4 Dosimetry, Epidemiology and Toxicology of Nanoparticles 81
Wolfgang G. Kreyling, Manuela Semmler-Behnke, and Winfried Möller
4.1 Introduction 81
4.1.1 Overview 81
4.1.2 General Background 81
4.1.3 Epidemiological Evidence for Health Effect Associations with Ambient Particulate Matter 83
4.1.4 Toxicological Evidence for Ambient Particulate Matter Induced Adverse Health Effects 84
4.2 Inhaled Nanoparticle Dosimetry 85
4.2.1 Particle Measures 85
4.2.2 Deposition of Ultrafine Particles in the Respiratory System 86
4.2.3 Fate of Particles in the Lungs 87
4.2.3.1 Soluble Particle Compounds 87
4.2.3.2 Slowly Dissolving and Insoluble Particles Deposited on the Airway Wall 87
4.2.3.3 Slowly Dissolving and Insoluble Particles Deposited in the Alveolar Region 87
4.2.3.4 Macrophage-mediated Particle Transport 88
4.2.4 Translocation of Ultrafine Particles into Systemic Circulation 88
4.2.4.1 Studies of Systemic Particle Translocation in Humans 88
4.2.4.2 Studies of Systemic Particle Translocation in Animals 89
4.3 Toxicological Plausibility of Health Effects Caused by Nanoparticles 93
4.3.1 Pulmonary Inflammation Induced by Ultrafine Particles 94
4.3.2 Systemic Inflammation and other Responses 95
4.3.3 Relevant Parameters in Nanoparticle Toxicology 96
4.3.3.1 Number Concentration and Surface Area 96
4.3.3.2 Particle Shape (Fibers and Nanotubes) 97
4.3.3.3 Transition Metals 98
4.3.3.4 Organic Compounds 99
4.3.3.5 Extrapolation of Health Effects Observed in Animals towards Human 100
4.4 Integrated Concept of Risk Assessment of Nanoparticles 101
References 103

5 Impact of Ceramic and Metallic Nano-scaled Particles on Endothelial Cell Functions in Vitro 108
Kirsten Peters, Ronald E. Unger, Antonietta M. Gatti, Enrico Sabbioni, Andrea Gambarelli, and C. James Kirkpatrick
5.1 Introduction 108
5.1.1 Origin of Particles in the Human Environment 108
5.1.1.1 Evidence for Size-dependent Toxicity of Particles 109
5.1.1.2 Dissemination and Interferences of Nanoparticles within the Body 109
5.1.1.3 Endothelial Cells and Nanoparticle Exposure 110
5.1.1.4 Testing of Nanoparticle-induced Effects on Human Endothelial Cells In Vitro 110
5.2 Materials and Methods 111
5.2.1 Cell Culture 111
5.2.2 Particles 111
5.2.3 Transmission Electron Microscopy (TEM) 111
5.2.4 Cytotoxicity Assay 111
5.2.5 Detection of Ki67 Expression 112
5.2.6 Quantification of IL-8 Release in Cell Culture Supernatant 112
5.2.7 Quantification of E-selectin Cell Surface Protein Expression 112
5.2.8 Fluorescence Staining 113
5.2.9 Statistical Analysis 113
5.3 Results 113
5.4 Discussion 120
5.4.1 Particle Internalization 121
VIII | Contents

5.4.2 Particle Cytotoxicity 122
5.4.3 Pro-inflammatory Activation 123
5.4.4 Conclusions and Consideration of the Risk of Nanoparticles to Human Health 124
Acknowledgments 125
References 125

6 Toxicity of Carbon Nanotubes and its Implications for Occupational and Environmental Health 130
Chiu-wing Lam, John T. James, Richard McCluskey, Andrij Holian, and Robert L. Hunter

6.1 Introduction 130
6.1.1 Overview 130
6.1.2 General Background 131
6.2 Carbon Nanotubes and Nanotechnology 131
6.3 Manufactured Carbon Nanotubes: Their Synthesis, Properties, and Potential Applications 132
6.3.1 Discovery and Synthesis 132
6.3.2 Physical and Chemical Properties 133
6.3.3 Applications 134
6.4 Occurrence of Carbon Nanotubes in the Environment 134
6.4.1 Potential Occupational Exposures and Environmental Impact of Manufactured Carbon Nanotubes 134
6.4.2 Combustion-generated Carbon Nanotubes in the Environment 136
6.4.2.1 MWCNT Formation from Natural Gas Combustion Indoors 137
6.4.2.2 MWCNTs in Metropolitan Outdoor Air 137
6.4.2.3 MWCNTs in Ancient Ice 137
6.4.2.4 Concern about Combustion-generated MWCNTs in the Environment 138
6.4.3 Comparison of the Physical Structures of Manufactured and Non-manufactured Carbon Nanotubes 139
6.5 Toxicological Studies and Toxicity of Manufactured CNTs 139
6.5.1 Study of SWCNTs in Guinea Pigs by Huczko et al. of Warsaw University 142
6.5.2 Study of SWCNTs in Mice by Lam et al. of NASA-JSC Toxicology Laboratory 142
6.5.3 Study of SWCNTs in Rats by Warheit et al. of DuPont Company 143
6.5.4 Study of SWCNTs in Mice by Shvedova et al. of NIOSH 145
6.5.5 Study of MWCNTs by Muller et al. of Belgium 146
6.6 Health Risk Implications 146
6.6.1 Toxicity Summary of CNTs and Occupational Exposure Risk 146
6.6.2 Impact of SWCNTs on Environmental Health 147
6.6.3 Toxicity of MWCNTs and Impact on Environmental Health 147
Acknowledgment 148
References 149
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Toxicity of Nanomaterials – New Carbon Conformations and Metal Oxides</td>
<td>153</td>
</tr>
<tr>
<td></td>
<td>Harald F. Krug, Katrin Kern, Jörg M. Wörle-Knirsch, and Silvia Diabaté</td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>153</td>
</tr>
<tr>
<td>7.1.1</td>
<td>Nanoscale Materials and Adverse Health Effects: Precautionary Measures</td>
<td>155</td>
</tr>
<tr>
<td>7.1.2</td>
<td>Hazard Identification and Exposure Estimation</td>
<td>156</td>
</tr>
<tr>
<td>7.2</td>
<td>Production and Use of “New Carbon Modifications” and Metal Oxides</td>
<td>157</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Health Aspects</td>
<td>159</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Uptake and Possible Transport, Depots, and Accumulation in Living Organisms</td>
<td>160</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Biological Effects on Cellular Mechanisms</td>
<td>164</td>
</tr>
<tr>
<td>7.2.3.1</td>
<td>Metal Oxides</td>
<td>165</td>
</tr>
<tr>
<td>7.2.3.2</td>
<td>New Carbon Modifications</td>
<td>169</td>
</tr>
<tr>
<td>7.2.4</td>
<td>Possible Hazards – Toxicological Impacts</td>
<td>175</td>
</tr>
<tr>
<td>7.3</td>
<td>Risk Characterization – A Conclusion</td>
<td>176</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Opportunities and Risks of Nanomaterials</td>
<td>177</td>
</tr>
<tr>
<td>7.3.2</td>
<td>New Materials without Risks?</td>
<td>177</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>179</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>III</th>
<th>Environment</th>
<th>187</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Nanomaterials for Environmental Remediation</td>
<td>189</td>
</tr>
<tr>
<td></td>
<td>Glen E. Fryxell and Shas V. Mattigod</td>
<td></td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>189</td>
</tr>
<tr>
<td>8.2</td>
<td>nanoparticle-based Remediation Materials</td>
<td>190</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Acid–Base Chemistry</td>
<td>191</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Redox Chemistry</td>
<td>194</td>
</tr>
<tr>
<td>8.2.3</td>
<td>Field Deployments of ZVI</td>
<td>195</td>
</tr>
<tr>
<td>8.2.4</td>
<td>Absorption Chemistry</td>
<td>196</td>
</tr>
<tr>
<td>8.3</td>
<td>Hybrid Nanostructured Remediation Materials</td>
<td>196</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Nanostructured Metal Phosphonates</td>
<td>196</td>
</tr>
<tr>
<td>8.3.1.1</td>
<td>Iminodiacetic Acids and Related Chelating Ligands</td>
<td>198</td>
</tr>
<tr>
<td>8.3.1.2</td>
<td>Macrocyclic Metal Phosphonates</td>
<td>199</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Self-assembled Monolayers on Mesoporous Supports (SAMMS)</td>
<td>200</td>
</tr>
<tr>
<td>8.3.2.1</td>
<td>Thiol SAMMS Performance with Actual Waste</td>
<td>200</td>
</tr>
<tr>
<td>8.3.2.2</td>
<td>Thiol SAMMS Performance on Contaminated Oil</td>
<td>202</td>
</tr>
<tr>
<td>8.3.2.3</td>
<td>Anion SAMMS</td>
<td>203</td>
</tr>
<tr>
<td>8.3.2.4</td>
<td>Actinide SAMMS</td>
<td>204</td>
</tr>
<tr>
<td>8.3.3</td>
<td>Functional CNTs</td>
<td>204</td>
</tr>
<tr>
<td>8.4</td>
<td>Conclusions</td>
<td>205</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>206</td>
</tr>
</tbody>
</table>
9 Nanomaterials for Water Treatment

Peter Majewski

9.1 Introduction 211
9.2 Iron Nanoparticles 214
9.3 Inorganic Photocatalysts 217
9.4 Functionalized Self-assembled Monolayers 221
9.5 Other Materials 225
9.6 Magnetic Iron Exchange Resin (MIEX) 226

References 227

10 Nanoparticles for the Photocatalytic Removal of Endocrine-disrupting Chemicals in Water

Heather M. Coleman

10.1 Introduction 234
10.2 Background to Oestrogens in the Environment 235
10.2.1 Advanced Oxidation Techniques (AOTs) 237
10.2.2 Ultraviolet Photolysis 238
10.3 Nanoparticles for Water Treatment Applications 238
10.3.1 Titanium Dioxide Photocatalysis 239
10.3.1.1 The Principle 239
10.3.1.2 Titanium Dioxide Nanoparticles as a Photocatalyst 240
10.3.1.3 Mechanism of TiO$_2$ Photocatalysis 241
10.4 Photocatalytic Degradation of 17β-Oestradiol in Water over an Immobilized TiO$_2$ Catalyst 243
10.5 Rapid Loss of Oestrogenicity of Natural and Synthetic Oestrogens in Water by Photocatalysis and UVA Photolysis Monitored using a Yeast Screen Bioassay 245
10.6 Photocatalytic Degradation of 17β-Oestradiol, Oestriol and 17α-Ethynylestradiol in a Quartz Coil Reactor Monitored using Fluorescence Spectroscopy 251
10.7 Comparison of Photocatalysis with UVA and UVC Radiation for the Degradation of Natural and Synthetic Oestrogens in Water 259
10.8 Overall Conclusions and Identification of Research Needs 262

References 265

11 Nanosensors for Environmental Applications

Wan Y. Shih and Wei-Heng Shih

11.1 Introduction 271
11.1.1 Overview 271
11.1.2 Sensor 271
11.1.3 Piezoelectric Cantilever Sensors (PECS) 273
11.2 Theory of PECS 273
11.2.1 Unimorph 274
11.2.2 PECS with a Nonpiezoelectric Extension 275
11.3 Examples of Detections 278
11.3.1 Immobilization and In-solution Quantification of Yeast Cells 278
11.3.2 Detection of Binding of Biotinylated Polystyrene Spheres to Immobilized Avidin 280
11.3.3 Detection of Avidin Immobilization at the Cantilever Tip 281
11.3.4 Salmonella typhimurium Detection 281
11.3.5 Nerve Gas Simulant Detection 286
11.4 Piezoelectric Cantilever Miniaturization 287
11.4.1 PMN-PT/Cu Microcantilevers and PZT/SiO₂-Si₃N₄ Nanocantilevers 288
11.4.2 PZT/SiO₂ Microcantilevers 289
11.5 Conclusions 290
Acknowledgment 291
References 291

12 Toxicology of Nanoparticles in Environmental Air Pollution 294
Ken Donaldson, Nicholas Mills, David E. Newby, William MacNee, and Vicki Stone
12.1 Introduction 294
12.2 History of Air Pollution 294
12.3 Introduction to Air Pollution Particles 296
12.4 Adverse Effects of PM in Epidemiological Studies 296
12.5 Nanoparticles are an Important Component of PM 298
12.6 Role of Nanoparticles in Mediating the Adverse Pulmonary Effects of PM 300
12.7 Effects of Nanoparticles on the Cardiovascular System 302
12.8 Inflammation, Atherosclerosis and Plaque Rupture 303
12.9 Nanoparticle Translocation and Direct Vascular Effects 304
12.10 Endothelial Dysfunction and Endogenous Fibrinolysis 305
12.11 Coagulation and Thrombosis 307
12.12 Cardiac Autonomic Dysfunction 308
12.13 Effects of Nanoparticles on the Liver and Gastrointestinal Tract 308
12.14 Effects of NP on the Nervous System 310
12.15 Summary 310
References 310

Index 319