CONTROL and
AUTOMATION of
ELECTRICAL POWER DISTRIBUTION SYSTEMS

James Northcote-Green
ABB Power Technologies AB
Vasteras, Sweden

Robert Wilson
Abasis Consulting Limited
Whitchurch, Shropshire, UK
Chapter 3 Design, Construction, and Operation of Distribution Systems, MV Networks

3.1 Introduction ... 105
3.2 Design of Networks .. 107
 3.2.1 Selection of Voltage ... 109
 3.2.2 Overhead or Underground 110
 3.2.3 Sizing of Distribution Substations 110
 3.2.4 Connecting the MV (The Upstream Structure) 114
 3.2.5 The Required Performance of the Network 116
 3.2.6 The Network Complexity Factor 117
 3.2.7 Voltage Control .. 121
 3.2.8 Current Loading ... 128
 3.2.9 Load Growth ... 129
 3.2.10 Earthing (Grounding) .. 131
 3.2.11 Lost Energy ... 132
 3.2.12 Comparison of U.K. and U.S. Networks 137
 3.2.13 The Cost of Installation of the Selected Design 140
 3.2.14 The Cost of Owning the Network after Construction 141

Appendix 2A — Sample Comprehensive CIM Structure 103
References ... 104
5.20 Examples of Building Blocks ... 239
5.21 Typical Inputs and Outputs for Building Blocks 241
 5.21.1 Sectionalizing Switch (No Measurements) 241
 5.21.2 Sectionalizing Switch (with Measurements) 242
 5.21.3 Protection-Based Recloser for Overhead Systems 243
5.22 Control Building Blocks and Retrofit 244
5.23 Control Logic .. 244
 5.23.1 Option 1, Circuit A with 1.5 Switch Automation, FPI and Remote Control of Switches 245
 5.23.2 Option 2, Circuit B with 2.5 Switch Automation, FPI and Remote Control of Switches 246
 5.23.3 Options 3 and 4, No Fault Passage Indicators 247
 5.23.4 Options 5 and 7, Local Control Only 248
 5.23.5 Options 6 and 8, Local Control Only 249
 5.23.6 Special Case of Multishot Reclosing and Automatic Sectionalizing ... 249

Chapter 6 Performance of Distribution Systems 251

6.1 Faults on Distribution Networks 251
 6.1.1 Types of Faults ... 251
 6.1.2 The Effects of Faults ... 254
 6.1.3 Transient Faults, Reclosers, and Compensated Networks 254
6.2 Performance and Basic Reliability Calculations 259
 6.2.1 System Indices .. 259
 6.2.2 Calculating the Reliability Performance of Networks 260
 6.2.3 Calculation of Sustained Interruptions (SAIDI) 261
 6.2.4 Calculation of Sustained Interruption Frequency (SAIFI) ... 263
 6.2.5 Calculation of Momentary Interruption Frequency (MAIFI) 264
 6.2.6 Summary of Calculated Results 264
 6.2.7 Calculating the Effects of Extended Control 266
 6.2.8 Performance as a Function of Network Complexity Factor .. 267
 6.2.9 Improving Performance without Automation 268
6.3 Improving the Reliability of Underground Networks 272
 6.3.1 Design Method 1 — Addition of Manually Operated Sectionalizing Switches 272
 6.3.2 Design Method 2 — Addition of Manually Switched Alternative Supply .. 273
 6.3.3 Design Method 3 — Add Automatic in Line Protection 274
 6.3.4 Design Method 4 — Add Continuous Alternative Supply 275
6.4 Improving the Reliability of Overhead Networks (Design Methods 5, 6, and 7) ... 278
6.5 Improving Performance with Automation 281
Chapter 7 Communication Systems for Control and Automation

7.1 Introduction

7.2 Communications and Distribution Automation

7.3 DA Communication Physical Link Options

7.4 Wireless Communication

7.4.1 Unlicensed Spread Spectrum Radio

7.4.2 VHF, UHF Narrow Bandwidth Packaged Data Radio (Licensed/Unlicensed)

7.4.3 Radio Network Theory

7.4.4 Trunked Systems (Public Packet-Switched Radio)

7.4.5 Cellular

7.4.6 Paging Technology

7.4.7 Satellite Communications — Low Earth Orbit

7.5 Wire Communications

7.5.1 Telephone Line

7.5.2 Fiber Optics

7.5.3 Distribution Line Carrier

7.5.4 Summary of Communications Options

7.6 Distribution Automation Communications Protocols

7.6.1 MODBUS

7.6.2 DNP 3.0

7.6.3 IEC 60870-5-101

7.6.4 UCA 2.0, IEC 61850

7.7 Distribution Automation Communications Architecture

7.7.1 Central DMS Communication

7.7.2 Polling and Report by Exception

7.7.3 Intelligent Node Controllers/Gateways

7.7.4 Interconnection of Heterogeneous Protocols

7.8 DA Communications User Interface

7.9 Some Considerations for DA Communications Selection

7.10 Requirements for Dimensioning the Communication Channel

8.1 Introduction

Chapter 8 Creating the Business Case
8.2 Potential Benefits Perceived by the Industry for Substation Automation

8.2.1 Integration and Functional Benefits of Substation Control and Automation

8.2.2 SCADA vs. SA

8.2.3 Economic Benefits Claimed by the Industry

8.3 Potential Benefits Perceived by the Industry for Feeder Automation

8.4 Generic Benefits

8.5 Benefit Opportunity Matrix

8.6 Benefit Flowchart

8.7 Dependencies, and Shared and Unshared Benefits

8.7.1 Dependencies

8.7.2 Shared Benefits

8.7.3 Unshared Benefits from Major DA Functions

8.7.4 Benefit Summary

8.8 Capital Deferral, Release, or Displacement

8.8.1 Deferral of Primary Substation Capital Investment

8.8.2 Release of Distribution Network Capacity

8.8.3 Release of Upstream Network and System Capacity

8.8.4 Displacement of Conventional Equipment with Automation

8.9 Savings in Personnel

8.9.1 Reduction in Substation/Control Center Operating Levels

8.9.2 Reduction in Inspection Visits

8.9.3 Reduction in Crew Time

8.9.4 Calculation of Crew Times Savings Associated with Investment- and Operation-Related Savings

8.9.5 Reduced Crew Time and Effort for Changing Relay Settings for CLPU

8.10 Savings Related to Energy

8.10.1 Reduction in Energy Not Supplied Savings Due to Faster Restoration

8.10.2 Reduced Energy Revenue Due to Controlled Load Reduction

8.10.3 Energy Savings Due to Technical Loss Reduction

8.11 Other Operating Benefits

8.11.1 Repair and Maintenance Benefits

8.11.2 Benefits from Better Information (DMOL)

8.11.3 Improved Customer Relationship Management

8.12 Summary of DA Functions and Benefits

8.13 Economic Value — Cost

8.13.1 Utility Cost

8.13.2 Customer Cost