Contents

1 History, Structural Formulation of the Field Through Elementary Steps, and Future Perspectives, 1
 1.1 Historical Notes, 1
 1.2 Current Polymer Processing Practice, 7
 1.3 Analysis of Polymer Processing in Terms of Elementary Steps and Shaping Methods, 14
 1.4 Future Perspectives: From Polymer Processing to Macromolecular Engineering, 18

2 The Balance Equations and Newtonian Fluid Dynamics, 25
 2.1 Introduction, 25
 2.2 The Balance Equations, 26
 2.3 Reynolds Transport Theorem, 26
 2.4 The Macroscopic Mass Balance and the Equation of Continuity, 28
 2.5 The Macroscopic Linear Momentum Balance and the Equation of Motion, 32
 2.6 The Stress Tensor, 37
 2.7 The Rate of Strain Tensor, 40
 2.8 Newtonian Fluids, 43
 2.9 The Macroscopic Energy Balance and the Bernoulli and Thermal Energy Equations, 54
 2.10 Mass Transport in Binary Mixtures and the Diffusion Equation, 60
 2.11 Mathematical Modeling, Common Boundary Conditions, Common Simplifying Assumptions, and the Lubrication Approximation, 60

3 Polymer Rheology and Non-Newtonian Fluid Mechanics, 79
 3.1 Rheological Behavior, Rheometry, and Rheological Material Functions of Polymer Melts, 80
 3.2 Experimental Determination of the Viscosity and Normal Stress Difference Coefficients, 94
 3.3 Polymer Melt Constitutive Equations Based on Continuum Mechanics, 100
 3.4 Polymer Melt Constitutive Equations Based on Molecular Theories, 122
4 The Handling and Transporting of Polymer Particulate Solids, 144

4.1 Some Unique Properties of Particulate Solids, 145
4.2 Agglomeration, 150
4.3 Pressure Distribution in Bins and Hoppers, 150
4.4 Flow and Flow Instabilities in Hoppers, 152
4.5 Compaction, 154
4.6 Flow in Closed Conduits, 157
4.7 Mechanical Displacement Flow, 157
4.8 Steady Mechanical Displacement Flow Aided by Drag, 159
4.9 Steady Drag-induced Flow in Straight Channels, 162
4.10 The Discrete Element Method, 165

5 Melting, 178

5.1 Classification and Discussion of Melting Mechanisms, 179
5.2 Geometry, Boundary Conditions, and Physical Properties in Melting, 184
5.3 Conduction Melting without Melt Removal, 186
5.4 Moving Heat Sources, 193
5.5 Sintering, 199
5.6 Conduction Melting with Forced Melt Removal, 201
5.7 Drag-induced Melt Removal, 202
5.8 Pressure-induced Melt Removal, 216
5.9 Deformation Melting, 219

6 Pressurization and Pumping, 235

6.1 Classification of Pressurization Methods, 236
6.2 Synthesis of Pumping Machines from Basic Principles, 237
6.3 The Single Screw Extruder Pump, 247
6.4 Knife and Roll Coating, Calenders, and Roll Mills, 259
6.5 The Normal Stress Pump, 272
6.6 The Co-rotating Disk Pump, 278
6.7 Positive Displacement Pumps, 285
6.8 Twin Screw Extruder Pumps, 298

7 Mixing, 322

7.1 Basic Concepts and Mixing Mechanisms, 322
7.2 Mixing Equipment and Operations of Multicomponent and Multiphase Systems, 354
7.3 Distribution Functions, 357
7.4 Characterization of Mixtures, 378
7.5 Computational Analysis, 391

8 Devolatilization, 409

8.1 Introduction, 409
8.2 Devolatilization Equipment, 411
8.3 Devolatilization Mechanisms, 413
CONTENTS

8.4 Thermodynamic Considerations of Devolatilization, 416
8.5 Diffusivity of Low Molecular Weight Components in Molten Polymers, 420
8.6 Boiling Phenomena: Nucleation, 422
8.7 Boiling–Foaming Mechanisms of Polymeric Melts, 424
8.8 Ultrasound-enhanced Devolatilization, 427
8.9 Bubble Growth, 428
8.10 Bubble Dynamics and Mass Transfer in Shear Flow, 430
8.11 Scanning Electron Microscopy Studies of Polymer Melt Devolatilization, 433

9 Single Rotor Machines, 447
9.1 Modeling of Processing Machines Using Elementary Steps, 447
9.2 The Single Screw Melt Extrusion Process, 448
9.3 The Single Screw Plasticating Extrusion Process, 473
9.4 The Co-rotating Disk Plasticating Processor, 506

10 Twin Screw and Twin Rotor Processing Equipment, 523
10.1 Types of Twin Screw and Twin Rotor–based Machines, 525
10.2 Counterrotating Twin Screw and Twin Rotor Machines, 533
10.3 Co-rotating, Fully Intermeshing Twin Screw Extruders, 572

11 Reactive Polymer Processing and Compounding, 603
11.1 Classes of Polymer Chain Modification Reactions, Carried out in Reactive Polymer Processing Equipment, 604
11.2 Reactor Classification, 611
11.3 Mixing Considerations in Multicomponent Miscible Reactive Polymer Processing Systems, 623
11.4 Reactive Processing of Multicomponent Immiscible and Compatibilized Immiscible Polymer Systems, 632
11.5 Polymer Compounding, 635

12 Die Forming, 677
12.1 Capillary Flow, 680
12.2 Elastic Effects in Capillary Flows, 689
12.3 Sheet Forming and Film Casting, 705
12.4 Tube, Blown Film, and Parison Forming, 720
12.5 Wire Coating, 727
12.6 Profile Extrusion, 731

13 Molding, 753
13.1 Injection Molding, 753
13.2 Reactive Injection Molding, 798
13.3 Compression Molding, 811
CONTENTS

14 Stretch Shaping, 824
 14.1 Fiber Spinning, 824
 14.2 Film Blowing, 836
 14.3 Blow Molding, 841

15 Calendering, 865
 15.1 The Calendering Process, 865
 15.2 Mathematical Modeling of Calendering, 867
 15.3 Analysis of Calendering Using FEM, 873

Appendix A Rheological and Thermophysical Properties of Polymers, 887
Appendix B Conversion Tables to the International System of Units (SI), 914
Appendix C Notation, 918

Author Index, 929
Subject Index, 944