METHODOLOGY
FOR THE DIGITAL
CALIBRATION OF ANALOG
CIRCUITS AND SYSTEMS

with Case Studies

by

Marc Pastre

Ecole Polytechnique Fédérale de Lausanne,
Switzerland

and

Maher Kayal

Ecole Polytechnique Fédérale de Lausanne,
Switzerland

Springer
Contents

List of Figures xi
List of Tables xvii

1. INTRODUCTION
1. Context 1
2. Objectives 2
3. Compensation methodology 2
4. Applications of the compensation methodology 2
5. Book organization 3

2. AUTOCALIBRATION AND COMPENSATION TECHNIQUES 5
1. Introduction 5
2. Matching 5
 2.1 Matching rules 6
 2.2 Matching parameters 6
3. Chopper stabilization 7
 3.1 Principle 7
 3.2 Analysis 8
 3.3 Implementation 9
4. Autozero 11
 4.1 Principle 11
 4.2 Analysis 12
 4.3 Noise 14
5. Correlated double sampling 18
6. Ping-pong 18
7. Other techniques 20
Digital Calibration of Analog Circuits and Systems

4.7 Offset compensation of the Miller amplifier 136

5 Application to SOI 1T DRAM calibration 138
5.1 1-transistor SOI memory cell 139
5.2 Memory cell imperfections 140
5.3 Sensing scheme 141
5.4 Calibration principle 144
5.5 Calibration algorithm 146
5.6 Measurements 147

6 Conclusion 148

5. HALL MICROSYSTEM WITH CONTINUOUS DIGITAL GAIN CALIBRATION 151

1 Introduction 151
2 Integrated Hall sensors 151
2.1 Hall effect 152
2.2 Hall sensors 153
2.3 Hall sensor models 155

3 Spinning current technique 157
4 Sensitivity calibration of Hall sensors 160
4.1 Sensitivity drift of Hall sensors 161
4.2 Integrated reference coils 162
4.3 Sensitivity calibration 163
4.4 State of the art 166

5 Hall sensor microsystems 171
5.1 Analog front-ends for current measurement 171

6 Continuous digital gain calibration technique 173
6.1 Principle 173
6.2 Combined modulation scheme 175
6.3 Demodulation schemes 176
6.4 Gain compensation 179
6.5 Offset compensation 183
6.6 Noise filtering 184
6.7 Delta-sigma analog-to-digital converter 189
6.8 Rejection of signal interferences 193

7 Conclusion 197

6. IMPLEMENTATION OF THE HALL MICROSYSTEM WITH CONTINUOUS CALIBRATION 199

1 Introduction 199
2 Hall sensor array 199
3 Preamplifier 201
 3.1 Programmable gain range preamplifier 201
 3.2 DDA 202
 3.3 Operational amplifier 207
4 Demodulators 208
 4.1 Switched-capacitor integrators 209
 4.2 External signal demodulator 213
 4.3 Reference demodulator 216
 4.4 Offset demodulator 220
5 Delta-sigma modulator 221
6 System improvements 224
 6.1 Compensation of the reference demodulator offset 224
 6.2 Coil-sensor capacitive coupling 225
 6.3 External interferences 226
 6.4 Alternate modulation/demodulation schemes 227
7 System integration 230
 7.1 Configuration and measurement possibilities 230
 7.2 Integrated circuit 231
 7.3 Measurement results 233
8 Conclusion 240

7. CONCLUSION 241
 1 Highlights 241
 2 Main contributions 242
 3 Perspectives 242

References 245
Index 255