Computer-Based Design and Manufacturing
An Information-Based Approach

Emad Abouel Nasr, Ph.D.
Industrial Engineering Department
University of Houston
Houston, TX, USA

and

Ali K. Kamrani, Ph.D.
Industrial Engineering Department
University of Houston
Houston, TX, USA

Springer
Contents

Preface vii
List of Figures xxi
List of Tables xxv

Part I: Product Design

Chapter 1: Product Development Life Cycle 3

1.1. Introduction 3
1.2. The Evolution of Product Development 3
1.3. Sequential Product Development 5
1.4. Simultaneous/Integrated Product Development 6
1.5. Generic Product Development Process 7
 1.5.1. Needs Recognition 8
 1.5.2. Design Specifications 11
 1.5.3. Conceptual Design 13
 1.5.4. Concept Generation 14
 1.5.5. Concept Selection 15
 1.5.6. Final Concept Preliminary Design 16
 1.5.7. Detail Design 16
 1.5.8. Component Final Design 17
 1.5.9. Cost Estimation 17
 1.5.10. Prototyping 17
 1.5.11. Production 17
 1.5.12. Marketing 18
1.6. Case Study-Needs Recognition: A Utility Snip 19
 1.6.1. Overview 19
 1.6.2. Objectives 20
 1.6.3. Procedure 20
Chapter 2: Product Life Cycle Cost Model

2.1. Introduction
2.2. Role of Computers in Manufacturing Systems
2.3. Product Life Cycle Cost Analysis
 2.3.1. Cost Breakdown in Manufacturing Systems
 2.3.1.1. Total System Cost (C)
 2.3.1.2. Advanced Research and Development (C_r)
 2.3.1.3. Program Management (C_rm)
 2.3.1.4. Advanced Research and Development (C_nr)
 2.3.1.5. Engineering design cost (C_re)
 2.3.1.6. Equipment Development and Test (C_n)
 2.3.1.7. Engineering Data (C_rd)
 2.3.1.8. Investment (C_i)
 2.3.1.9. Manufacturing (C_im)
 2.3.1.10. Nonrecurring Manufacturing Cost (C_in)
 2.3.1.11. Recurring Manufacturing Cost (C_ir)
 2.3.1.12. Construction Cost (C_ic)
 2.3.1.13. Initial Logistic Support Cost (C_il)
 2.3.1.14. Operator Personnel Cost (C_o)
 2.3.1.15. Operation Cost (C_oo)
 2.3.1.16. Operator Personnel Cost (C_coop)
 2.3.1.17. Operator Training Cost (C_oott)
 2.3.1.18. Operational Facilities Cost (C_oof)
 2.3.1.19. Support and Handling Equipment Cost (C_oee)
 2.3.1.20. Maintenance Cost (C_om)
 2.3.1.21. Maintenance Personnel and Support Cost (C_omm)
 2.3.1.22. Corrective Maintenance Cost (C_oom)
 2.3.1.23. Preventive Maintenance Cost (C_oos)
 2.3.1.24. Spare/Repair Cost (C_omx)
 2.3.1.25. Test and Support Equipment Cost (C_oms)
 2.3.1.26. Transportation and Handling Cost (C_omt)
 2.3.1.27. Maintenance Training Cost (C_omp)
 2.3.1.28. Maintenance Facilities Cost (C_omf)
 2.3.1.29. Technical Data Cost (C_omd)
 2.3.1.30. System/Equipment Modification (C_on)
 2.3.1.31. System Phase-out and Disposal Cost (C_op)

2.4. Computer-Aided Cost Estimating in Manufacturing
2.5. Objective of Cost Estimating
 2.5.1. Assist in Submitting Bids
 2.5.2. Revise Quotations
Chapter 5: Feature Extraction Techniques

5.1. Feature Representation
 5.1.1. Feature Representation by B-rep
 5.1.2. Feature Representation by CSG
 5.1.3. Feature Representation by B-rep and CSG (Hybrid Method)

5.2. Feature Recognition Techniques
 5.2.1. The Syntactic Pattern Recognition Approach
 5.2.2. The Logic-Based Approach
 5.2.3. Graph-Based Approach
 5.2.4. Expert System Approach
 5.2.5. Volume Decomposition and Composition Approach
 5.2.6. 3D Feature Recognition from a 2D Feature Approach

5.3. Summary
5.4. Problems

Chapter 6: Initial Graphics Exchange Specifications (IGES)

6.1. Data Transfer in CAD/CAM Systems
6.2. Initial Graphics Exchange Specifications (IGES)
 6.2.1. Structure of the IGES File
 6.2.1.1. Start Section
 6.2.1.2. Global Section
 6.2.1.3. Directory Entry Section (DE)
 6.2.1.4. Parameter Data Section (PD)
 6.2.1.5. Terminate Section
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.4.1.3. Advantages and Disadvantages of SLA</td>
<td>287</td>
</tr>
<tr>
<td>11.4.1.3.1. Advantages of SLA</td>
<td>287</td>
</tr>
<tr>
<td>11.4.1.3.2. Disadvantages of SLA</td>
<td>288</td>
</tr>
<tr>
<td>11.4.2. Solid Ground Curing (SGC)</td>
<td>288</td>
</tr>
<tr>
<td>11.4.2.1. SGC Process Preparation</td>
<td>288</td>
</tr>
<tr>
<td>11.4.2.2. SGC Process</td>
<td>288</td>
</tr>
<tr>
<td>11.4.2.3. Advantages and Disadvantages of SGC</td>
<td>290</td>
</tr>
<tr>
<td>11.4.2.3.1. Advantages of SGC</td>
<td>290</td>
</tr>
<tr>
<td>11.4.2.3.2. Disadvantages of SGC</td>
<td>290</td>
</tr>
<tr>
<td>11.4.3. Laminated Object Manufacturing (LOM)</td>
<td>291</td>
</tr>
<tr>
<td>11.4.3.1. LOM Process Preparation</td>
<td>291</td>
</tr>
<tr>
<td>11.4.3.2. LOM Process</td>
<td>291</td>
</tr>
<tr>
<td>11.4.3.3. Advantages and Disadvantages of LOM</td>
<td>293</td>
</tr>
<tr>
<td>11.4.3.3.1. Advantages of LOM</td>
<td>293</td>
</tr>
<tr>
<td>11.4.3.3.2. Disadvantages of LOM</td>
<td>293</td>
</tr>
<tr>
<td>11.4.4. Selective Laser Sintering (SLS)</td>
<td>293</td>
</tr>
<tr>
<td>11.4.4.1. SLS Process Preparation</td>
<td>294</td>
</tr>
<tr>
<td>11.4.4.2. SLS Process</td>
<td>294</td>
</tr>
<tr>
<td>11.4.4.3. Advantages and Disadvantages of SLS</td>
<td>294</td>
</tr>
<tr>
<td>11.4.4.3.1. Advantages of SLS</td>
<td>294</td>
</tr>
<tr>
<td>11.4.4.3.2. Disadvantages of SLS</td>
<td>296</td>
</tr>
<tr>
<td>11.4.5. Direct Shell Production Casting (DSPC)</td>
<td>296</td>
</tr>
<tr>
<td>11.4.5.1. DSPC Process Preparation</td>
<td>296</td>
</tr>
<tr>
<td>11.4.5.2. DSPC Process</td>
<td>297</td>
</tr>
<tr>
<td>11.4.5.3. Advantages and Disadvantages of DSPC</td>
<td>297</td>
</tr>
<tr>
<td>11.4.5.3.1. Advantages of DSPC</td>
<td>297</td>
</tr>
<tr>
<td>11.4.5.3.2. Disadvantages of DSPC</td>
<td>297</td>
</tr>
<tr>
<td>11.4.6. Fused Deposition Modeling (FDM)</td>
<td>299</td>
</tr>
<tr>
<td>11.4.6.1. FDM Process</td>
<td>299</td>
</tr>
<tr>
<td>11.4.6.2. FDM Support System</td>
<td>299</td>
</tr>
<tr>
<td>11.4.6.3. Advantages and Disadvantages of FDM</td>
<td>300</td>
</tr>
<tr>
<td>11.4.6.3.1. Advantages of FDM</td>
<td>300</td>
</tr>
<tr>
<td>11.4.6.3.2 Disadvantages of FDM</td>
<td>300</td>
</tr>
<tr>
<td>11.5. Summary</td>
<td>301</td>
</tr>
<tr>
<td>11.6. Problems</td>
<td>301</td>
</tr>
</tbody>
</table>

Chapter 12: Collaborative Engineering

12.1. Introduction | 303 |
12.2. Product Design and Development Process | 304 |
 12.2.1. Integrated Product Development (IPD) | 305 |
 12.2.2. The Principles of IPD | 305 |
12.3. Collaborative Engineering Approach | 306 |
12.4. Role of Collaboration in IPD | 307 |
12.5. Product Development Teams (PDTs) and Collocation 308
12.6. Effectiveness of PDT 309
12.7. Product Design in a Collaborative Environment 310
 12.7.1. Collaborative Marketplace 311
 12.7.2. Collaborative Approach 312
12.8. Integrated Product Design and Development in a Collaborative Environment 313
 12.8.1. System Structure and Components 315
 12.8.2. Collaborative Environment 316
 12.8.3. Analysis Phase 317
 12.8.4. Optimization Phase 318
 12.8.5. Parametric CAD Modeling 319
 12.8.6. Advantages of the System 319
12.9. Summary 320
12.10. Problems 320
References 323
Index 339