EVOLUTION OF PHASE TRANSITIONS
A Continuum Theory

ROHAN ABEYARATNE
Massachusetts Institute of Technology

JAMES K. KNOWLES
California Institute of Technology
Contents

Preface .. page xiii

Part I Introduction

1 Introduction ... 3
 1.1 What this monograph is about 3
 1.2 Some experiments 7
 1.3 Continuum mechanics 9
 1.4 Quasilinear systems 10
 1.5 Outline of monograph 11

Part II Purely Mechanical Theory

2 Two-Well Potentials, Governing Equations
 and Energetics 19
 2.1 Introduction 19
 2.2 Two-phase nonlinearly elastic materials 20
 2.3 Field equations and jump conditions 25
 2.4 Energetics of motion, driving force and dissipation
 inequality 27

3 Equilibrium Phase Mixtures and Quasistatic
 Processes .. 32
 3.1 Introduction 32
 3.2 Equilibrium states 33
 3.3 Variational theory of equilibrium mixtures
 of phases 37
 3.4 Quasistatic processes 42
 3.5 Nucleation and kinetics 44
 3.6 Constant elongation rate processes 47
 3.7 Hysteresis 53
4 Impact-Induced Transitions in Two-Phase Elastic Materials 59
 4.1 Introduction 59
 4.2 The impact problem for trilinear two-phase materials 61
 4.2.1 The constitutive law 61
 4.2.2 The impact problem 64
 4.3 Scale-invariant solutions of the impact problem 66
 4.3.1 Solutions without a phase transition 66
 4.3.2 Solutions with a phase transition: The two-wave case 67
 4.3.3 Solutions with a phase transition: The one-wave case 68
 4.3.4 The totality of solutions 69
 4.4 Nucleation and kinetics 71
 4.5 Comparison with experiment 74
 4.6 Other types of kinetic relations 77
 4.7 Related work 77

Part III Thermomechanical Theory

5 Multiple-Well Free Energy Potentials 85
 5.1 Introduction 85
 5.2 Helmholtz free energy potential 86
 5.3 Potential energy function and the effect of stress 88
 5.4 Example 1: The van der Waals Fluid 90
 5.5 Example 2: Two-phase martensitic material with cubic and tetragonal phases 95

6 The Continuum Theory of Driving Force 105
 6.1 Introduction 105
 6.2 Balance laws, field equations and jump conditions 106
 6.2.1 Balances of momentum and energy in integral form 106
 6.2.2 Localization of the balance laws 106
 6.3 The second law of thermodynamics and the driving force 108
 6.3.1 Entropy production rate 108
 6.3.2 Driving force and the second law 110
 6.3.3 Driving force in the case of mechanical equilibrium 111

7 Thermoelastic Materials 113
 7.1 Introduction 113
 7.2 The thermoelastic constitutive law 113
 7.2.1 Relations among stress, deformation gradient, temperature and specific entropy 113
CONTENTS

14.6 The effect of the transition layers: Further observations 229
14.7 The effect of the transition layers: Further modeling 230
14.8 Kinetics 231

Author Index .. 235
Subject Index .. 238