SEMICONDUCTOR MACROATOMS

Basic Physics and Quantum-device Applications

edited by

Fausto Rossi

Politecnico di Torino, Italy

Imperial College Press
Contents

Preface v

1. Fundamentals of Zero-Dimensional Nanostructures 1
 1.1 Introduction .. 1
 1.2 Structural Information on Quantum Dots 3
 1.3 Single-Particle Electronic States in Quantum Dots 7
 1.3.1 Eigenstates in the absence of external perturbations 7
 1.3.2 Effect of "external" fields 12
 1.3.2.1 Electric field effects 12
 1.3.2.2 Magnetic field effects 14
 1.3.3 Dot-dot interaction in stacked dots; quantum dot molecules 16
 1.4 Optical Properties .. 17
 1.4.1 The idealized quantum dot: a two-level atom.
 Populations and coherence. 17
 1.4.2 Optical properties of dot ensembles. Broadening and
 selection rules ... 19
 1.4.3 Single dot spectroscopy: the failure of the simple
 ideas ... 21
 1.5 Phonons and Carrier Coupling to the Phonons in Quantum
 Dots ... 26
 1.6 Carrier-Carrier Interaction in Quantum Dots 32
 1.6.1 Electron-hole interaction in quantum dots 33
 1.6.2 Excitonic complexes and optical properties of highly
 excited quantum dots: new phenomena and a new approach 36
1.6.3 Auger scattering in quantum dots 39

2. Growth and Characterization of Self-Assembled Semiconductor Macroatoms 51
 2.1 Introduction .. 51
 2.1.1 Semiconductor quantum dots 53
 2.2 Fabrication and Structural Analysis of InGaAs/GaAs Quantum Dots 54
 2.3 Nanotechnological Strategies for the Fabrication of Single-Dot Structures 61
 2.4 Modeling of the Carrier Wavefunctions 64
 2.5 Photoluminescence Experiments 73
 2.6 Single-Dot Spectroscopy 78
 2.6.1 Wavefunction spectroscopy 78
 2.6.2 Optical spectroscopy 85
 2.7 Conclusions ... 92

3. Ultrafast Coherent Spectroscopy of Single Semiconductor Quantum Dots 101
 3.1 Introduction 101
 3.2 Semiconductor Quantum Dots 104
 3.2.1 Interface quantum dots 104
 3.2.2 Self-assembled quantum dots 107
 3.3 Experimental Techniques 114
 3.3.1 Coherent spectroscopy on interface quantum dots 115
 3.3.2 Coherent spectroscopy on self-assembled quantum dots 119
 3.4 Results ... 123
 3.4.1 Coherent control in single interface quantum dots 123
 3.4.1.1 Ultrafast optical nonlinearities of single interface quantum dots 123
 3.4.1.2 Optical Stark effect and Rabi oscillations in a quantum dot: ultrafast control of single exciton polarizations 128
 3.4.2 Coherent control in single self-assembled quantum dots 138
 3.5 Outlook ... 143

4. Few-Particle Effects in Semiconductor Macroatoms/Molecules 151
6.3 Analytical Results for Excitations with Ultrafast Pulses
 6.3.1 Linear single-dot spectra
 6.3.2 The initial decay of four-wave-mixing signals
 6.3.3 Impact of pure dephasing on electronic and phononic occupations

6.4 Influences of Temporal and Spectral Properties of the Laser Excitation on the Decoherence
 6.4.1 Phonon-induced damping of Rabi oscillations in quantum dots
 6.4.2 Optimal gating strategy: a trade-off between different types of decoherence

6.5 Conclusions

7. All-Optical Schemes for Quantum Information Processing with Semiconductor Macroatoms
 7.1 Introduction
 7.2 All-Optical Quantum Information/Computation with Semiconductor Macroatoms
 7.2.1 Single-dot encoding schemes
 7.2.2 Coupled-dot encoding schemes
 7.2.2.1 GaAs-based quantum hardware
 7.2.2.2 GaN-based quantum hardware
 7.2.3 Combination of charge and spin degrees of freedom
 7.2.3.1 Artificial molecules as qubits and Raman adiabatic passages for the optical gating
 7.3 Summary and Conclusions

 8.1 Introduction
 8.2 Field-Induced Exciton-Exciton Coupling in Semiconductor Quantum Dots with no Intrinsic Bias
 8.3 Modeling Few Particle Interactions in Quantum Dots with Intrinsic Bias
 8.3.1 Engineering electronic structure and optical spectrum in coupled GaN quantum dots
 8.3.2 Semi-analytical model
 8.3.2.1 Single exciton system
8.3.2.2 Biexciton system .. 299
8.4 Semiconductor Double Quantum Dot as Storage Qubit ... 303
 8.4.1 Definition .. 303
 8.4.2 Measurement using a STIRAP process 305
 8.4.2.1 Failure of the adiabatic condition 308
 8.4.2.2 Failure of the energy conservation
 requirement .. 310
8.5 All-Optical Read-Out Device 311

Index .. 317