Local Positioning Systems

LBS Applications and Services

Krzysztof W. Kolodziej
Johan Hjelm
Table of Contents

Chapter 1 The Three L's: Location, Location, Location

- Application Examples and Use Cases .. 3
- People/Asset Management and Tracking .. 6
 - Use Case: Location-Based Triggers (Buddy Finder, Conference Assistant, and Child Alert) .. 10
- Health Care and Mobile Patient Monitoring 12
- Security .. 14
- Emergencies .. 16
- Location-Based Network Access/Security 17
- Games .. 17
- Retail and Shopping .. 18
 - Use Case: Mobile Commerce (Product Finder, Personalized Shopping Assistant) ... 23
 - Use Case: Navigation ... 25
- Retail, Advertisement, and Marketing .. 27
- Retail and Postanalysis of Shopping Behavior 29
- Tour Guides .. 30
- Other ... 32

Chapter 2 Preconditions and Frameworks for LBS Development

- Preconditions (LBS Market and Development) 35
 - Scalability .. 38
 - Real-Time Operation .. 39
 - Power Consumption .. 39
 - System Use Cases, Scenarios, Business and Usage Models 40
 - MIT Cricket .. 41
 - MSR RADAR ... 42
 - A Framework for Developing Indoor Location-Based Services 42
 - Using Open Standards .. 43
 - Four Dimensions of Development ... 44
 - Framework for Organizing Development Tasks 44
 - Issues in the Marketplace Dimension: Finding out What the User Wants and Needs ... 45
 - Issues in the Technical Dimension: Determining Infrastructure Type and Service Development Environments .. 46
 - Issues in the Organizational Dimension: Internal and Partners 50
 - Issues in the Economic Dimension: Technology Standard Selection and Business Agreements 50
Three Steps to Location Service Development

Step 1: Determining the Best Niche Application
(Marketplace Dimension) ... 51
Filter A: Filtering by Size of Opportunity 52

Step 2: Determining the Infrastructure Types
(Infrastructure Dimension) .. 53
Infrastructure Requirements and Potential Use of Standards 53
Filter B: Filtering by Ease of Implementation 56

Step 3: Service Portfolio and Strategy Selection
(Organizational Dimension) 57
Filter C: Filtering by Organizational Driving Forces 57

Cost-Related Issues .. 59
Timeliness .. 59
Legitimacy .. 59
Making the Decision .. 60
How to Use the Dimensions 62

Chapter 3 Infrastructure .. 65

The Infrastructure Components 65
The Role of the Infrastructure 65
The Server and Terminal Components 67

The Software Infrastructure .. 68
The Client Component .. 68
The Middleware Component 69
The Database Component .. 72
The Content Component ... 75

Communication Infrastructure 76
The Network Component .. 76
Communication among the Components 78
Service Discovery and Metadata 80

Example: Crickets in the MIT Facilities Environment 83
The Sensor Component ... 85

Positioning Infrastructure .. 86

Chapter 4 Sensor Systems for Indoor Position Computation 87
Positioning Systems and Algorithms 87
Classifying Positioning Systems 88
Classification Based on where Location Estimation Takes Place .. 90
Classification Based on Signal Metrics 92
Indoor Signal Propagation Characteristics 93
Radio Propagation ... 94
More on Multipath ... 97
RSS Positioning Technique 99
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>How It Works</td>
<td>232</td>
</tr>
<tr>
<td>Cricket Hardware and Software</td>
<td>235</td>
</tr>
<tr>
<td>Manufacturing and Dissemination</td>
<td>235</td>
</tr>
<tr>
<td>Ekahau Positioning System</td>
<td>236</td>
</tr>
<tr>
<td>Ekahau System Components</td>
<td>237</td>
</tr>
<tr>
<td>Ekahau Client</td>
<td>237</td>
</tr>
<tr>
<td>Ekahau Positioning Engine</td>
<td>238</td>
</tr>
<tr>
<td>Ekahau Manager</td>
<td>239</td>
</tr>
<tr>
<td>Ekahau Planner</td>
<td>239</td>
</tr>
<tr>
<td>Ekahau Application Framework and SDK</td>
<td>239</td>
</tr>
<tr>
<td>Intel Place Lab and Skyhook WPS</td>
<td>242</td>
</tr>
<tr>
<td>How It Works</td>
<td>245</td>
</tr>
<tr>
<td>Radio Beacons</td>
<td>245</td>
</tr>
<tr>
<td>Mapping Service</td>
<td>246</td>
</tr>
<tr>
<td>Location Databases</td>
<td>246</td>
</tr>
<tr>
<td>Place Lab Clients</td>
<td>247</td>
</tr>
<tr>
<td>Communication Protocols</td>
<td>248</td>
</tr>
<tr>
<td>Microsoft Research Radar</td>
<td>249</td>
</tr>
<tr>
<td>Rosum TV</td>
<td>251</td>
</tr>
<tr>
<td>Rosum TV Components</td>
<td>251</td>
</tr>
<tr>
<td>Rosum TV Measurement Module</td>
<td>252</td>
</tr>
<tr>
<td>Location Server</td>
<td>253</td>
</tr>
<tr>
<td>Monitor Units (Reference Stations)</td>
<td>253</td>
</tr>
<tr>
<td>Pseudo-TV Transmitter</td>
<td>253</td>
</tr>
<tr>
<td>Communication Channels</td>
<td>253</td>
</tr>
<tr>
<td>How It Works</td>
<td>254</td>
</tr>
<tr>
<td>Rosum Hybrid TV-GPS System</td>
<td>256</td>
</tr>
<tr>
<td>AeroScout</td>
<td>258</td>
</tr>
<tr>
<td>AeroScout Components</td>
<td>258</td>
</tr>
<tr>
<td>AeroScout Wi-Fi Tags</td>
<td>258</td>
</tr>
<tr>
<td>AeroScout Location Receivers</td>
<td>259</td>
</tr>
<tr>
<td>AeroScout Excitors</td>
<td>260</td>
</tr>
<tr>
<td>AeroScout Engine</td>
<td>260</td>
</tr>
<tr>
<td>BLIP Systems</td>
<td>263</td>
</tr>
<tr>
<td>BLIP Systems Components</td>
<td>264</td>
</tr>
<tr>
<td>BLipNode</td>
<td>264</td>
</tr>
<tr>
<td>BLipServer</td>
<td>264</td>
</tr>
<tr>
<td>BlipManager</td>
<td>269</td>
</tr>
<tr>
<td>Chapter 7 Modeling Location</td>
<td>271</td>
</tr>
<tr>
<td>Location Modeling Languages</td>
<td>271</td>
</tr>
<tr>
<td>Mobile Location Protocol</td>
<td>273</td>
</tr>
<tr>
<td>OGC Languages: SensorML, GML, Etc.</td>
<td>282</td>
</tr>
<tr>
<td>OGC Sensor Model Language</td>
<td>282</td>
</tr>
<tr>
<td>Open GIS Web Services</td>
<td>284</td>
</tr>
</tbody>
</table>
Chapter 8 Service Deployment

Step 1: Site Survey

Creating the Signal Strength Model (Radio Map)

Site Survey and the Resulting Data

Step 2: Create a Positioning Model

Step 3: Calibrate the Positioning Model

Using Ekahau Manager

Using WRAPI and JWRAP1

General Recommendations

Step 4: Access Point Placement and Configuration

Locales

Resolution

Interference of Other Devices

Tips for Increasing the Number of APs

WLAN Management and Location-Based Security

Step 5: Tracking

Step 6: Maintenance (Periodic Accuracy Test)

Creating Floor Maps

Step 1: AutoCAD DXF to UniGrafix Conversion

Step 2: Feature Recognition

Step 3: Path Extraction

Step 4: Labeling

Three-Dimensional Indoor Maps

Using the Ekahau Positioning System

Ekahau Java SDK

YAX Protocol

YAX Telnet Example

Understanding Location Estimates in Ekahau

Understanding Location Maps and Logical Areas in Ekahau

Using and Refreshing LocationContext

Getting the Map Image of a Location Context

Application/Service Example: HawkTour

HawkTour System Architecture

HawkTour Application Architecture

Location Service

Content Service

Map Service (Map Manager)

Hardware Interface Service

HawkTour Application Implementation