Integrated Circuit Design for High-Speed Frequency Synthesis

John Rogers
Calvin Plett
Foster Dai
3.4 Continuous-Time Analysis for PLL Synthesizers

- 3.4.1 Simplified Loop Equations
- 3.4.2 PLL System Frequency Response and Bandwidth
- 3.4.3 Complete Loop Transfer Function, Including C_2

3.5 Discrete-Time Analysis for PLL Synthesizers

3.6 Transient Behavior of PLLs

- 3.6.1 Linear Transient Behavior
- 3.6.2 Nonlinear Transient Behavior

3.7 Phase Noise and Timing Jitter in PLL Synthesis

- 3.7.1 Various Noise Sources in PLL Synthesizers
- 3.7.2 In-Band and Out-of-Band Phase Noise in PLL Synthesis

References

CHAPTER 4

Introduction to Digital IC Design

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Digital Design Methodology and Flow</td>
<td>85</td>
</tr>
<tr>
<td>4.2 Verilog HDL</td>
<td>88</td>
</tr>
<tr>
<td>4.2.1 Verilog Program Structure</td>
<td>89</td>
</tr>
<tr>
<td>4.2.2 Verilog Data Formats</td>
<td>94</td>
</tr>
<tr>
<td>4.2.3 Verilog Operators</td>
<td>95</td>
</tr>
<tr>
<td>4.2.4 Verilog Control Constructs</td>
<td>95</td>
</tr>
<tr>
<td>4.2.5 Blocking and Nonblocking Assignments</td>
<td>97</td>
</tr>
<tr>
<td>4.2.6 Tasks and Functions</td>
<td>99</td>
</tr>
<tr>
<td>4.3 Behavioral and Structural Modeling</td>
<td>101</td>
</tr>
<tr>
<td>4.4 Combinational Digital Circuit Design</td>
<td>102</td>
</tr>
<tr>
<td>4.5 Sequential Digital Circuit Design</td>
<td>103</td>
</tr>
<tr>
<td>4.6 Digital Design Example I: A Multimodulus Divider</td>
<td>106</td>
</tr>
<tr>
<td>4.7 Digital Design Example II: A Programmable MASH $\Delta\Sigma$ Modulator</td>
<td>109</td>
</tr>
<tr>
<td>4.7.1 MASH $\Sigma\Delta$ Modulator Top-Level Structure</td>
<td>110</td>
</tr>
<tr>
<td>4.7.2 Fractional Accumulator with Programmable Size and Seed-Loading Capability</td>
<td>114</td>
</tr>
<tr>
<td>4.7.3 Reset Synchronization</td>
<td>116</td>
</tr>
<tr>
<td>4.7.4 Simulated Results</td>
<td>117</td>
</tr>
<tr>
<td>References</td>
<td>118</td>
</tr>
</tbody>
</table>

CHAPTER 5

CMOS Logic and Current Mode Logic

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Introduction</td>
<td>119</td>
</tr>
<tr>
<td>5.2 CMOS Logic Circuits</td>
<td>120</td>
</tr>
<tr>
<td>5.3 Large-Signal Behavior of Bipolar and CMOS Differential Pairs</td>
<td>121</td>
</tr>
<tr>
<td>5.4 Effect of Capacitance on Slew Rate</td>
<td>125</td>
</tr>
<tr>
<td>5.5 Trade-Off Between Power Consumption and Speed</td>
<td>129</td>
</tr>
<tr>
<td>5.6 CML Combinational Circuits</td>
<td>132</td>
</tr>
<tr>
<td>5.7 CML Sequential Circuits</td>
<td>134</td>
</tr>
<tr>
<td>5.8 Master-Slave D-Flip-Flop</td>
<td>139</td>
</tr>
<tr>
<td>5.9 CML Circuit-Delay Analysis</td>
<td>142</td>
</tr>
</tbody>
</table>
5.10 Low-Power CML Circuits 144
5.11 CML Biasing Circuits 146
5.12 Driver Circuits 150
References 152

CHAPTER 6
Dividers and Phase-Frequency Detectors 153
6.1 Introduction 153
6.2 Dividers 153
6.2.1 A Static Divide-by-Two Circuit 155
6.2.2 Programmable Divide-by-Two or Divide-by-Three Circuit 158
6.2.3 A 50% Duty Cycle, High-Speed, Divide-by-Three Circuit 163
6.2.4 A Multimodulus Divider 165
6.2.5 A Generic MMD Architecture 170
6.2.6 Pulse-Swallow Dividers 175
6.3 Multipliers 180
6.4 Phase Detectors 181
6.4.1 Basic Types of Phase Detectors 181
6.4.2 Circuit Implementations of PFDs 183
6.4.3 Dead Zone in PFDs 186
6.4.4 Lock-Detection Circuits 189
6.4.5 A Modified PFD with Aligned UP and DN Pulses 190
6.4.6 PFDs for CDR Applications 191
References 196

CHAPTER 7
Charge Pumps and Loop Filters 199
7.1 Introduction 199
7.2 Charge Pumps 199
7.2.1 A Basic Charge Pump 199
7.2.2 Saturation Voltage 200
7.2.3 Current Source Output Impedance 201
7.2.4 Reference Feedthrough 203
7.2.5 Transistor Gain Considerations 206
7.2.6 Charge Pump Noise 207
7.2.7 Charge Sharing 209
7.2.8 Improving Matching Between I_p and I_n 209
7.2.9 Charge Pumps Compatible with CML/ECL 211
7.2.10 A Differential Charge Pump 215
7.2.11 Common-Mode Feedback for a Differential Charge Pump 217
7.2.12 Another Differential Charge Pump 217
7.2.13 Programmable Bias Schemes 218
7.3 Loop Filters 218
7.3.1 Passive Loop Filters 219
7.3.2 Active Loop Filters 222
7.3.3 LC Loop Filters 224
References 230
CHAPTER 9

9.3 ΣΔ Modulation in Fractional-N Frequency Synthesis

9.3.1 A First-Order ΣΔ Modulator for Fractional-N Frequency Synthesis

9.3.2 MASH ΣΔ Modulator

9.3.3 Single-Stage ΣΔ Modulators with Multiple Feedback Paths

9.3.4 Single-Stage ΣΔ Modulators with a Single Feedback Path

9.3.5 A Generic High-Order ΣΔ Modulator Topology

9.3.6 Modified ΣΔ Modulator with Improved High-Frequency Response

9.3.7 Phase Noise Due to ΣΔ Converters

9.3.8 Randomization by Noise-Shaped Dithering

9.3.9 Spur Reduction Using Precalculated Seeds

9.3.10 Dynamic Range

9.3.11 Maximal Loop Bandwidth

9.3.12 Optimal Parameters

9.3.13 Performance Comparison

References

CHAPTER 10

Direct Digital Synthesis

10.1 Introduction

10.2 DDS Theory of Operation

10.3 DDS Spectral Purity

10.3.1 Phase Noise Due to Clock Jitter

10.3.2 Spurs Due to Discrete Phase Accumulation

10.3.3 Spurs and Quantization Noise Due to Phase Truncation

10.3.4 Quantization Noise Due to Finite Number of Amplitude Bits

10.3.5 DAC Nonlinearities and Aliased Images

10.3.6 Oversampling Effect

10.4 ΣΔ Noise Shaping in DDS

10.4.1 DDS Using Phase Domain ΣΔ Noise Shaping

10.4.2 DDS Using Frequency Domain ΣΔ Noise Shaping

10.4.3 ROM Size Reduction Using ΣΔ Noise Shaping

10.5 High-Speed ROM-Less DDS

10.5.1 Pipelined Accumulator

10.5.2 Accumulator with CLA Adders

10.5.3 Sine-Weighted Nonlinear DACs

10.5.4 Nonlinear DAC Segmentations

10.5.5 Nonlinear Coarse DAC

10.5.6 Comparison of ROM-Less DDS Performance

References

CHAPTER 11

Direct Modulation in Frequency Synthesizers

11.1 Introduction

11.2 Direct Modulation in PLL Frequency Synthesizers

References