GLASSY MATERIALS AND DISORDERED SOLIDS

An Introduction to Their Statistical Mechanics

Kurt Binder
Institut für Physik, Mainz, Germany

Walter Kob
Laboratoire des Colloïdes,
Verres et Nanomatériaux,
Montpellier, France

World Scientific
Contents

Preface

1. Introduction
 1.1 Models of Disordered Matter: A Brief Overview 1
 1.2 General Concepts on the Statistical Mechanics of Disordered Matter 13
 1.2.1 Lattice Models 13
 1.2.2 Averaging in Random Systems: Quenched versus Annealed Disorder 17
 1.2.3 “Symmetry Breaking” and “Ergodicity Breaking” 20
 1.2.4 Configurational Entropy versus “Complexity”, and the Kauzmann Paradox 25

2. Structure and Dynamics of Disordered Matter 35
 2.1 Pair Distribution Functions and the Static Structure Factor 35
 2.2 Topological Disorder and Bond Orientational Correlations 51
 2.3 General Aspects of Dynamic Correlation Functions and Transport Properties 63

3. Models of Disordered Structures 79
 3.1 Random Walks: A Simple Model for the Configurations of Flexible Polymers 79
 3.2 Percolation: A First Example of a Fractal Structure 94
 3.2.1 The Percolation Probability and Percolation Threshold 94
Contents

3.2.2 Diluted Magnets and Critical Exponents 98
3.2.3 The Fractal Dimensionality and the Concept of Finite Size Scaling 104
3.2.4 Scaling of the Cluster Size Distribution 106
3.2.5 Percolation for Low and High Lattice Dimensions 109
3.2.6 Rigidity Percolation 113
3.3 Other Fractals (Diffusion-Limited Aggregation, Random Surfaces, etc.) 116
3.3.1 General Concepts on Fractal Geometry 116
3.3.2 Diffusion-Limited Aggregation 120
3.3.3 Growth of Random Interfaces 122
3.4 Random Close Packing 124
3.5 Continuous Random Networks 132
3.6 Chemically Realistic Models of Structural Glasses 139

4. General Concepts and Physical Properties of Disordered Matter 165
4.1 The Rouse Model for Polymer Dynamics: A Simple Example for the Consequences of the Random Walk Picture 165
4.2 Application of the Percolation Problem to Physical Systems 178
4.2.1 Percolation Conductivity and a Naive Treatment of the Elasticity of Polymer Networks 178
4.2.2 Excitations of Diluted Magnets Near the Percolation Threshold 183
4.2.3 Effective Medium Theory 188
4.3 Elementary Excitations of Fractal Structures 190
4.3.1 Diffusion on a Percolation Cluster: The "Ant in the Labyrinth" 190
4.3.2 The Spectral Dimension and Fracton Excitations 193
4.3.3 The Sol-Gel Transition Revisited 198
4.4 Physical Properties of Amorphous Solids 202
4.4.1 Two-Level Systems 203
4.4.2 Anomalies of Glasses at Intermediate Temperatures: Excess Specific Heat, Thermal Conductivity Plateau, and Boson Peak 210
4.5 Spin Glasses
4.5.1 Some Experimental Facts about Spin Glasses: Systems and Physical Properties 222
4.5.2 Theoretical Models 233
4.5.3 The Replica Method and the Mean Field Theory of the Ising Spin Glass 237
4.5.4 Replica Symmetry Breaking 245
4.5.5 Spin Glasses Beyond Mean Field Theory 255
4.6 Variants and Extensions of Spin Glasses 263
4.6.1 p-Spin Interaction Spin Glasses and the Random Energy Model 263
4.6.2 Potts Glasses 264
4.6.3 Quadrupolar Glasses as Models for Diluted Molecular Crystals 276
4.6.4 Atomistically Realistic Models of Diluted Molecular Crystals 281
4.6.5 Spin Models with Quenched Random Fields 285

5. Supercooled Liquids and the Glass Transition 311
5.1 Phenomenology of Glass-Forming Systems 312
5.2 Models for Slow Relaxation 331
5.2.1 The Theory of Adam and Gibbs 332
5.2.2 The Free Volume Theory 338
5.2.3 Kinetically Constrained Models 345
5.3 The Mode-Coupling Theory of the Glass Transition 359
5.3.1 The Zwanzig-Mori Projection Operator Formalism 360
5.3.2 The Mode-Coupling Approximations 364
5.3.3 The Mode-Coupling Theory of the Glass Transition 366
5.3.4 Predictions of Mode-Coupling Theory 375
5.3.5 The Relaxation Dynamics of Glass-Forming Liquids and Test of the Predictions of MCT 385
5.3.6 Concluding Remarks on Mode-Coupling Theory 412

Index 431