Many-body Quantum Theory in Condensed Matter Physics

an introduction

HENRIK BRUUS
Department of Micro and Nanotechnology
Technical University of Denmark

and

KARSTEN FLENSBERG
Ørsted Laboratory, Niels Bohr Institute,
University of Copenhagen

OXFORD
UNIVERSITY PRESS
3 Phonons; coupling to electrons
 3.1 Jellium oscillations and Einstein phonons 52
 3.2 Electron–phonon interaction and the sound velocity 53
 3.3 Lattice vibrations and phonons in 1D 54
 3.4 Acoustical and optical phonons in 3D 57
 3.5 The specific heat of solids in the Debye model 59
 3.6 Electron–phonon interaction in the lattice model 61
 3.7 Electron–phonon interaction in the jellium model 64
 3.8 Summary and outlook 65

4 Mean-field theory 66
 4.1 Basic concepts of mean-field theory 66
 4.2 The art of mean-field theory 69
 4.3 Hartree–Fock approximation 70
 4.3.1 Hartree–Fock approximation for the homogenous electron gas 71
 4.4 Broken symmetry 72
 4.5 Ferromagnetism 74
 4.5.1 The Heisenberg model of ionic ferromagnets 74
 4.5.2 The Stoner model of metallic ferromagnets 76
 4.6 Summary and outlook 78

5 Time dependence in quantum theory 80
 5.1 The Schrödinger picture 80
 5.2 The Heisenberg picture 81
 5.3 The interaction picture 81
 5.4 Time-evolution in linear response 84
 5.5 Time-dependent creation and annihilation operators 84
 5.6 Fermi’s golden rule 86
 5.7 The T-matrix and the generalized Fermi’s golden rule 87
 5.8 Fourier transforms of advanced and retarded functions 88
 5.9 Summary and outlook 90

6 Linear response theory 92
 6.1 The general Kubo formula 92
 6.1.1 Kubo formula in the frequency domain 94
 6.2 Kubo formula for conductivity 95
 6.3 Kubo formula for conductance 97
 6.4 Kubo formula for the dielectric function 99
 6.4.1 Dielectric function for translation-invariant system 100
 6.4.2 Relation between dielectric function and conductivity 101
 6.5 Summary and outlook 101
CONTENTS

10.2 Sequential tunneling: the Coulomb blockade regime 154
10.2.1 Coulomb blockade for a metallic dot 155
10.2.2 Coulomb blockade for a quantum dot 158
10.3 Coherent many-body transport phenomena 159
10.3.1 Cotunneling 159
10.3.2 Inelastic cotunneling for a metallic dot 160
10.3.3 Elastic cotunneling for a quantum dot 161
10.4 The conductance for Anderson-type models 162
10.4.1 The conductance in linear response 163
10.4.2 Calculation of Coulomb blockade peaks 166
10.5 The Kondo effect in quantum dots 169
10.5.1 From the Anderson model to the Kondo model 169
10.5.2 Comparing the Kondo effect in metals and quantum dots 173
10.5.3 Kondo-model conductance to second order in $H_S^{(2)}$ 174
10.5.4 Kondo-model conductance to third order in $H_S^{(2)}$ 175
10.5.5 Origin of the logarithmic divergence 180
10.5.6 The Kondo problem beyond perturbation theory 181
10.6 Summary and outlook 182

11 Imaginary-time Green’s functions 184
11.1 Definitions of Matsubara Green’s functions 187
11.1.1 Fourier transform of Matsubara Green’s functions 188
11.2 Connection between Matsubara and retarded functions 189
11.2.1 Advanced functions 191
11.3 Single-particle Matsubara Green’s function 192
11.3.1 Matsubara Green’s function for non-interacting particles 192
11.4 Evaluation of Matsubara sums 193
11.4.1 Summations over functions with simple poles 194
11.4.2 Summations over functions with known branch cuts 196
11.5 Equation of motion 197
11.6 Wick’s theorem 198
11.7 Example: polarizability of free electrons 201
11.8 Summary and outlook 202

12 Feynman diagrams and external potentials 204
12.1 Non-interacting particles in external potentials 204
12.2 Elastic scattering and Matsubara frequencies 206
12.3 Random impurities in disordered metals 208
12.3.1 Feynman diagrams for the impurity scattering 209
12.4 Impurity self-average 211
12.5 Self-energy for impurity scattered electrons 216
12.5.1 Lowest-order approximation 217
12.5.2 First-order Born approximation 217
12.5.3 The full Born approximation 220
CONTENTS

12.5.4 The self-consistent Born approximation and beyond 222
12.6 Summary and outlook 224

13 Feynman diagrams and pair interactions 226
13.1 The perturbation series for \mathcal{G} 227
13.2 The Feynman rules for pair interactions 228
 13.2.1 Feynman rules for the denominator of $\mathcal{G}(b,a)$ 229
 13.2.2 Feynman rules for the numerator of $\mathcal{G}(b,a)$ 230
 13.2.3 The cancellation of disconnected Feynman diagrams 231
13.3 Self-energy and Dyson's equation 233
13.4 The Feynman rules in Fourier space 233
13.5 Examples of how to evaluate Feynman diagrams 236
 13.5.1 The Hartree self-energy diagram 236
 13.5.2 The Fock self-energy diagram 237
 13.5.3 The pair-bubble self-energy diagram 238
13.6 Cancellation of disconnected diagrams, general case 239
13.7 Feynman diagrams for the Kondo model 241
 13.7.1 Kondo model self-energy, second order in J 243
 13.7.2 Kondo model self-energy, third order in J 244
13.8 Summary and outlook 245

14 The interacting electron gas 246
14.1 The self-energy in the random phase approximation 246
 14.1.1 The density dependence of self-energy diagrams 247
 14.1.2 The divergence number of self-energy diagrams 248
 14.1.3 RPA resummation of the self-energy 248
14.2 The renormalized Coulomb interaction in RPA 250
 14.2.1 Calculation of the pair-bubble 251
 14.2.2 The electron–hole pair interpretation of RPA 253
14.3 The groundstate energy of the electron gas 253
14.4 The dielectric function and screening 256
14.5 Plasma oscillations and Landau damping 260
 14.5.1 Plasma oscillations and plasmons 262
 14.5.2 Landau damping 263
14.6 Summary and outlook 264

15 Fermi liquid theory 266
15.1 Adiabatic continuity 266
 15.1.1 Example: one-dimensional well 267
 15.1.2 The quasiparticle concept and conserved quantities 268
15.2 Semi-classical treatment of screening and plasmons 269
 15.2.1 Static screening 270
 15.2.2 Dynamical screening 271
15.3 Semi-classical transport equation 272
 15.3.1 Finite lifetime of the quasiparticles 276
15.4 Microscopic basis of the Fermi liquid theory 278
 15.4.1 Renormalization of the single particle
 Green’s function 278
 15.4.2 Imaginary part of the single-particle
 Green’s function 280
 15.4.3 Mass renormalization? 283
15.5 Summary and outlook 283

16 Impurity scattering and conductivity 285
 16.1 Vertex corrections and dressed Green’s functions 286
 16.2 The conductivity in terms of a general vertex function 291
 16.3 The conductivity in the first Born approximation 293
 16.4 Conductivity from Born scattering with interactions 296
 16.5 The weak localization correction to the conductivity 298
 16.6 Disordered mesoscopic systems 308
 16.6.1 Statistics of quantum conductance,
 random matrix theory 308
 16.6.2 Weak localization in mesoscopic systems 309
 16.6.3 Universal conductance fluctuations 310
 16.7 Summary and outlook 312

17 Green’s functions and phonons 313
 17.1 The Green’s function for free phonons 313
 17.2 Electron–phonon interaction and Feynman diagrams 314
 17.3 Combining Coulomb and electron–phonon interactions 316
 17.3.1 Migdal’s theorem 317
 17.3.2 Jellium phonons and the effective electron–electron
 interaction 318
 17.4 Phonon renormalization by electron screening in RPA 319
 17.5 The Cooper instability and Feynman diagrams 322
 17.6 Summary and outlook 324

18 Superconductivity 325
 18.1 The Cooper instability 325
 18.2 The BCS groundstate 327
 18.3 Microscopic BCS theory 329
 18.4 BCS theory with Matsubara Green’s functions 331
 18.4.1 Self-consistent determination of the BCS
 order parameter Δ_k 332
 18.4.2 Determination of the critical temperature T_c 333
 18.4.3 Determination of the BCS quasiparticle
 density of states 334
 18.5 The Nambu formalism of the BCS theory 335
 18.5.1 Spinors and Green’s functions in the
 Nambu formalism 335
 18.5.2 The Meissner effect and the London equation 336
18.5.3 The vanishing paramagnetic current response in BCS theory 337
18.6 Gauge symmetry breaking and zero resistivity 341
 18.6.1 Gauge transformations 341
 18.6.2 Broken gauge symmetry and dissipationless current 342
18.7 The Josephson effect 343
18.8 Summary and outlook 345

19 1D electron gases and Luttinger liquids 347
 19.1 What is a Luttinger liquid? 347
 19.2 Experimental realizations of Luttinger liquid physics 348
 19.2.1 Example: Carbon Nanotubes 348
 19.2.2 Example: semiconductor wires 348
 19.2.3 Example: quasi 1D materials 348
 19.2.4 Example: Edge states in the fractional quantum Hall effect 348
 19.3 A first look at the theory of interacting electrons in 1D 348
 19.3.1 The “quasiparticles” in 1D 350
 19.3.2 The lifetime of the “quasiparticles” in 1D 351
 19.4 The spinless Luttinger–Tomonaga model 352
 19.4.1 The Luttinger–Tomonaga model Hamiltonian 352
 19.4.2 Inter-branch interaction 354
 19.4.3 Intra-branch interaction and charge conservation 355
 19.4.4 Umklapp processes in the half-filled band case 356
 19.5 Bosonization of the Tomonaga model Hamiltonian 357
 19.5.1 Derivation of the bosonized Hamiltonian 357
 19.5.2 Diagonalization of the bosonized Hamiltonian 360
 19.5.3 Real space representation 360
 19.6 Electron operators in bosonized form 363
 19.7 Green’s functions 368
 19.8 Measuring local density of states by tunneling 369
 19.9 Luttinger liquid with spin 373
 19.10 Summary and outlook 374

A Fourier transformations 376
 A.1 Continuous functions in a finite region 376
 A.2 Continuous functions in an infinite region 377
 A.3 Time and frequency Fourier transforms 377
 A.4 Some useful rules 377
 A.5 Translation-invariant systems 378

Exercises 380

Bibliography 421

Index 424