MAINTAINING MISSION CRITICAL SYSTEMS IN A 24/7 ENVIRONMENT

Peter M. Curtis
Contents

Foreword xv
Preface xvii
Acknowledgments xix

 1.1 Introduction 1
 1.2 Risk Assessment 4
 1.3 Capital Costs Versus Operation Costs 6
 1.4 Change Management 7
 1.5 Testing and Commissioning 7
 1.6 Documentation and Human Factor 8
 1.7 Education and Training 11
 1.8 Operation and Maintenance 11
 1.9 Employee Certification 12
 1.10 Standard and Benchmarking 13

2. Policies and Regulations 15
 2.1 Executive Summary 15
 2.2 Introduction 16
 2.3 Industry Regulations and Policies 16
 2.3.1 U.S. Patriot Act 16
 2.3.2 The National Strategy for the Physical Protection of Critical Infrastructures and Key Assets 19
 2.3.3 U.S. Security and Exchange Commission (SEC) 20
 2.3.4 Sound Practices to Strengthen the Resilience of the U.S. Financial System 20
 2.3.5 Federal Real Property Council (FRPC) 21
 2.3.6 Basel II Accord 21

3.1 Introduction 25
3.2 Companies’ Expectations: Risk Tolerance and Reliability 27
3.3 Identifying the Appropriate Redundancy in a Mission Critical Facility 29
3.4 Improving Reliability, Maintainability, and Proactive Preventative Maintenance 29
3.5 The Mission Critical Facilities Manager and the Importance of the Boardroom 31
3.6 Quantifying Reliability and Availability 31
 3.6.1 Review of Reliability Versus Availability 32
3.7 Design Considerations for the Mission Critical Data Center 32
3.8 Mission Critical Facility Start-Up 33
3.9 The Evolution of Mission Critical Facility Design 34

4.1 Introduction 35
4.2 The History of the Maintenance Supervisor and the Evolution of the Mission Critical Facilities Engineer 37
4.3 Internal Building Deficiencies and Analysis 39
4.4 Evaluating Your System 40
4.5 Choosing a Maintenance Approach 41
4.6 Standards and Regulations Affecting How Safe Electrical Maintenance Is Performed 42
4.7 Maintenance of Typical Electrical Distribution Equipment 44
 4.7.1 Infrared Scanning 44
 4.7.2 15-Kilovolt Class Equipment 46
 4.7.3 480-Volt Switchgear 46
 4.7.4 Motor Control Centers and Panel Boards 47
 4.7.5 Automatic Transfer Switches 48
 4.7.6 Automatic Static Transfer Switches (ASTS) 48
 4.7.7 Power Distribution Units 49
 4.7.8 277/480-Volt Transformers 49
 4.7.9 Uninterruptible Power Systems 49
 4.7.10 A Final Point on Servicing Equipment 50
4.8 Being Proactive in Evaluating the Test Reports 51
4.9 Data Center Reliability 51
7.3 Transfer Switch Technology and Applications 91
 7.3.1 Types of Transfer Switches 92
 7.3.2 Bypass-Isolation Transfer Switches 94
 7.3.3 Breaker Pair ATSs 96

7.4 Control Devices 96
 7.4.1 Time Delays 96
 7.4.2 In-Phase Monitor 97
 7.4.3 Programmed (Delayed) Transition 98
 7.4.4 Closed Transition Transfer (Parallel Transfer) 99
 7.4.5 Test Switches 100
 7.4.6 Exercise Clock 102
 7.4.7 Voltage and Frequency Sensing Controls 102

7.5 Optional Accessories and Features 102

7.6 ATS Required Capabilities 103
 7.6.1 Close Against High In-Rush Currents 103
 7.6.2 Withstand and Closing Rating (WCR) 103
 7.6.3 Carry Full Rated Current Continuously 104
 7.6.4 Interrupt Current 104

7.7 Additional Characteristics and Ratings of ATSs 104
 7.7.1 NEMA Classification 104
 7.7.2 System Voltage Ratings 105
 7.7.3 ATS Sizing 105
 7.7.4 Seismic Requirement 105

7.8 Installation, Maintenance, and Safety 105
 7.8.1 Installation Procedures 105
 7.8.2 Maintenance Safety 106
 7.8.3 Maintenance 107
 7.8.4 Drawings and Manuals 107
 7.8.5 Testing and training 107

7.9 General Recommendations 110

8. The Static Transfer Switch 113

8.1 Introduction 113
8.2 Overview 114
 8.2.1 Major Components 114

8.3 Typical Static Switch One Line 115
 8.3.1 Normal Operation 116
 8.3.2 STS and STS/Transformer Configurations 117

8.4 STS Technology and Application 117
 8.4.1 General Parameters 117
 8.4.2 STS Location and Type 118
8.4.3 Advantages and Disadvantages of the Primary and Secondary STS/Transformer Systems 118
8.4.4 Monitoring and Data Logging and Data Management 118
8.4.5 STS Remote Communication 119
8.4.6 Security 119
8.4.7 Human Engineering and Eliminating Human Errors 120
8.4.8 Reliability and Availability 121
8.4.9 Reparability and Maintainability 122
8.4.10 Fault Tolerance and Abnormal Operation 123

8.5 Testing 123
8.6 Conclusion 124

9.1 Introduction 127
9.2 Electricity Basics 128
 9.2.1 Basic Circuit 129
9.3 Transmission of Power 130
 9.3.1 Life Cycle of Electricity 130
 9.3.2 Single- and Three-Phase Power Basics 132
 9.3.3 Unreliable Power Versus Reliable Power 134
9.4 Understanding Power Problems 134
 9.4.1 Power Quality Transients 135
 9.4.2 RMS Variations 137
 9.4.3 Causes of Power Line Disturbances 142
 9.4.4 Power Line Disturbance Levels 147
9.5 Tolerances of Computer Equipment 148
 9.5.1 CBEMA Curve 149
 9.5.2 ITIC Curve 149
 9.5.3 Purpose of Curves 150
9.6 Power Monitoring 150
 9.6.1 Example Power Monitoring Equipment 153
9.7 The Deregulation Wildcard 153
9.8 Troubleshooting Power Quality 154

10. An Overview of UPS Systems: Technology, Application, and Maintenance 159

10.1 Introduction 159
10.2 Purpose of UPS Systems 160
11.3 Cooling Within Datacom Rooms 194
11.4 Cooling Systems 195
 11.4.1 Airside 195
 11.4.2 Waterside 196
 11.4.3 Air- and Liquid-Cooling Distribution Systems 198
11.5 Components Outside the Datacom Room 202
 11.5.1 Refrigeration Equipment—Chillers 202
 11.5.2 Heat Rejection Equipment 206
 11.5.3 Energy Recovery Equipment 215
11.6 Components Inside Datacom Room 224
 11.6.1 CRAC Units 224

12. Raised Access Floors 229
Dan Catalfu

12.1 Introduction 229
 12.1.1 What Is an Access Floor? 229
 12.1.2 What Are the Typical Applications for Access Floors? 230
 12.1.3 Why Use an Access Floor? 231
12.2 Design Considerations 231
 12.2.1 Determine the Structural Performance Required 231
 12.2.2 Determine the Required Finished Floor Height 234
 12.2.3 Determine the Understructure Support Design Type Required 235
 12.2.4 Determine the Appropriate Floor Finish 236
 12.2.5 Airflow Requirements 237
12.3 Safety Concerns 239
 12.3.1 Removal and Reinstallation of Panels 239
 12.3.2 Removing Panels 240
 12.3.3 Reinstalling Panels 241
 12.3.4 Stringer Systems 241
 12.3.5 Protecting the Floor from Heavy Loads 242
 12.3.6 Grounding the Access Floor 248
 12.3.7 Fire Protection 249
 12.3.8 Zinc Whiskers 249
12.4 Panel Cutting 250
 12.4.1 Safety Requirements for Cutting Panels 250
 12.4.2 Guidelines for Cutting Panels 250
 12.4.3 Cutout Locations in Panels; Supplemental Support for Cut Panels 251
 12.4.4 Saws and Blades for Panel Cutting 251
12.4.5 Interior Cutout Procedure 251
12.4.6 Round Cutout Procedure 252
12.4.7 Installing Protective Trim Around Cut Edges 252

12.5 Access Floor Maintenance 253

- **12.5.1 Standard High-Pressure Laminate Floor Tile (HPL)** 253
- **12.5.2 Vinyl Conductive and Static Dissipative Tile** 254
- **12.5.3 Cleaning the Floor Cavity** 255
- **12.5.4 Removing Liquid from the Floor Cavity** 255

12.6 Troubleshooting 256

- **12.6.1 Making Pedestal Height Adjustments** 256
- **12.6.2 Rocking Panel Condition** 256
- **12.6.3 Panel Lipping Condition (Panel Sitting High)** 257
- **12.6.4 Out-of-Square Stringer Grid (Twisted Grid)** 258
- **12.6.5 Tipping at Perimeter Panels** 259
- **12.6.6 Tight Floor or Loose Floor: Floor Systems Laminated with HPL Tile** 259

13. Fire Protection in Mission Critical Infrastructures 261

Brian K. Fabel

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1 Introduction</td>
<td>261</td>
</tr>
<tr>
<td>13.2 Philosophy</td>
<td>262</td>
</tr>
<tr>
<td>13.2.1 Alarm and Notification</td>
<td>263</td>
</tr>
<tr>
<td>13.2.2 Early Detection</td>
<td>265</td>
</tr>
<tr>
<td>13.2.3 Fire Suppression</td>
<td>265</td>
</tr>
<tr>
<td>13.3 Systems Design</td>
<td>268</td>
</tr>
<tr>
<td>13.3.1 System Types</td>
<td>268</td>
</tr>
<tr>
<td>13.3.2 Fire and Building Codes</td>
<td>268</td>
</tr>
<tr>
<td>13.4 Fire Detection</td>
<td>270</td>
</tr>
<tr>
<td>13.5 Fire Suppression Systems</td>
<td>277</td>
</tr>
<tr>
<td>13.5.1 Watermist Systems</td>
<td>282</td>
</tr>
<tr>
<td>13.5.2 Carbon Dioxide Systems</td>
<td>285</td>
</tr>
<tr>
<td>13.5.3 Clean Agent Systems</td>
<td>286</td>
</tr>
<tr>
<td>13.5.4 Inert Gas Agents</td>
<td>287</td>
</tr>
<tr>
<td>13.5.5 IG-541</td>
<td>287</td>
</tr>
<tr>
<td>13.5.6 IG-55</td>
<td>288</td>
</tr>
<tr>
<td>13.5.7 Chemical Clean Agents</td>
<td>289</td>
</tr>
<tr>
<td>13.5.8 Fire Extinguishers</td>
<td>293</td>
</tr>
</tbody>
</table>
Bibliography

Appendix A: Critical Power

Appendix B: BITS Guide to Business-Critical Power

Appendix C: Syska Criticality Levels

Glossary

Index