Contents

Foreword xi

Authors and Contributors xv

1 A review of the state-of-the-art in distributed surveillance systems 1
M. Valera and S. A. Velastin

1.1 Introduction 1
1.2 Applications 3
1.3 Techniques used in surveillance systems 4
1.3.1 Object detection 5
1.3.2 Object recognition, tracking and performance evaluation 7
1.3.3 Behavioural analysis 8
1.3.4 Database 9
1.4 Review of surveillance systems 10
1.4.1 Third generation surveillance systems 10
1.4.2 General requirements of third generation of surveillance systems 10
1.4.3 Examples of surveillance systems 11
1.5 Distribution, communication and system design 22
1.6 Conclusions 23
Acknowledgements 24
References 24

2 Monitoring practice: event detection and system design 31
M. S. Svensson, C. Heath and P. Luff

2.1 Introduction 31
2.2 Setting the scene: operation rooms 33
2.3 Revealing problems 34
vi Contents

2.4 ‘Off-the-world’ 36
2.5 Combining views 37
2.6 Tracking problems: coordinating activities 39
2.7 Deploying image processing systems: implications for design 43
 2.7.1 Drawing upon local knowledge 44
 2.7.2 Combining images and data 47
 2.7.3 Displaying events: revealing problems 49
2.8 Summary and conclusion 52
Acknowledgements 53
References 54

3 A distributed database for effective management and evaluation of CCTV systems 55
J. Black, T. Ellis and D. Makris

3.1 Introduction 55
3.2 Background 56
 3.2.1 Multi-view tracking systems 56
 3.2.2 Video annotation and event detection 56
 3.2.3 Scene modelling 59
3.3 Off-line learning 60
 3.3.1 Semantic scene models 60
 3.3.2 Camera topology 61
3.4 Database design 61
 3.4.1 Data abstraction and representation 61
3.5 Video summaries and annotation 66
3.6 Performance evaluation 70
3.7 Pseudo-synthetic video 72
 3.7.1 Ground truth track selection 73
 3.7.2 Pseudo-synthetic video generation 74
 3.7.3 Perceptual complexity 77
 3.7.4 Surveillance metrics 78
3.8 Experiments and evaluation 81
 3.8.1 Single-view tracking evaluation (qualitative) 81
 3.8.2 Single-view tracking evaluation (quantitative) 82
3.9 Summary 87
References 87

4 A distributed domotic surveillance system 91
R. Cucchiara, C. Grana, A. Prati and R. Vezzani

4.1 Introduction 91
4.2 People segmentation for in-house surveillance 95
4.3 People tracking handling occlusions 98
A general-purpose system for distributed surveillance and communication

X. Desurmont, A. Bastide, J. Czyz, C. Parisot, J-F. Delaigle and B. Macq

5.1 Introduction
5.2 Objectives
5.3 System overview and description of components
 5.3.1 Hardware
 5.3.2 Acquisition
 5.3.3 Codec
 5.3.4 Network
 5.3.5 Storage
5.4 Software architecture and middleware
 5.4.1 Context
 5.4.2 Basic architecture and concept
 5.4.3 System and middleware integration
5.5 Computer vision
 5.5.1 Context acquisition
 5.5.2 Image pre-filtering
 5.5.3 Bottom-up tracking
 5.5.4 Top-down tracking
 5.5.5 Tracking analysis and event generation
 5.5.6 Metadata information
 5.5.7 Summary
5.6 Results and performance
5.7 Application case study
5.8 Conclusions

Acknowledgements
References

6 Tracking objects across uncalibrated, arbitrary topology camera networks

R. Bowden, A. Gilbert and P. KaewTraKulPong

6.1 Introduction
6.2 Previous work
6.3 Overview 159
6.4 Object detection module 161
 6.4.1 Background modelling 161
 6.4.2 Shadow elimination 163
6.5 Object tracking module 163
 6.5.1 Target model 164
 6.5.2 Data association module 164
 6.5.3 Stochastic sampling search 167
 6.5.4 Trajectory maintenance module 167
6.6 Colour similarity 168
6.7 Relating possible reappearing targets 170
 6.7.1 Path extraction 172
 6.7.2 Linking paths 172
6.8 Path-based target recognition 174
6.9 Learning and recognising trajectory patterns
 across camera views 177
6.10 Summary and conclusions 182
References 182

7 A distributed multi-sensor surveillance system for public transport
applications 185
J-L. Bruyelle, L. Khoudour, D. Aubert, T. Leclercq
and A. Flancquart

7.1 Introduction 185
 7.1.1 General architecture of the system 186
7.2 Applications 187
 7.2.1 Incident detection functions 187
 7.2.2 Passenger flow measurement functions 187
7.3 Intrusions into forbidden or dangerous areas 187
 7.3.1 Camera set-up – defining the covered area 188
 7.3.2 Extracting the moving objects 188
 7.3.3 Defining the size of objects 190
 7.3.4 Forbidden area 191
 7.3.5 Usage of the network 192
 7.3.6 Test results 193
 7.3.7 Conclusion 197
7.4 Counting of passengers 198
 7.4.1 Counting system overview 198
 7.4.2 Principle of the counting system 199
 7.4.3 Passengers counting 200
 7.4.4 Line images sequence of pedestrians 200
 7.4.5 Algorithm using structuring elements of varying size
 and shape 201
 7.4.6 Implementing the system 202
7.4.7 Results 204
7.4.8 Implications and future developments 208
7.5 Detection of abnormal stationarity 209
 7.5.1 Introduction 209
 7.5.2 Stationarity detection system 210
 7.5.3 Stationarity detection algorithm 213
 7.5.4 Results 215
7.6 Queue length measurement 216
 7.6.1 Introduction 216
 7.6.2 The queue measurement system 217
 7.6.3 Results 221
7.7 Conclusion 222
Acknowledgements 223
References 224

8 Tracking football players with multiple cameras 225
 D. Thirde, M. Xu and J. Orwell
 8.1 Introduction 225
 8.2 System architecture 227
 8.2.1 Arrangement of system components 227
 8.2.2 Synchronous feature sets 229
 8.2.3 Format of feature data 230
 8.3 Video processing 230
 8.3.1 Foreground detection 230
 8.3.2 Single-view tracking 234
 8.3.3 Category classification 236
 8.4 Multi-view, multi-person tracking 237
 8.4.1 Associating targets and features 237
 8.4.2 Target initialisation 239
 8.5 Strategies for selection and classification of tracks 240
 8.5.1 Application requirements 241
 8.5.2 The MAP labelling hypothesis 242
 8.5.3 Estimates for target categories 243
 8.5.4 Local fixed population constraints 244
 8.5.5 Techniques for error detection and correction 246
 8.6 Results 247
 8.7 Conclusions 250
Acknowledgements 251
References 251

9 A hierarchical multi-sensor framework for event detection in wide environments 253
 G. L. Foresti, C. Micheloni, L. Snidaro and C. Piciarelli
 9.1 Introduction 253
Contents

9.2 System description 254
9.3 Active tracking 256
9.4 Static camera networks 261
 9.4.1 Target tracking 261
 9.4.2 Position fusion 263
 9.4.3 Trajectory fusion 266
9.5 Event recognition 266
9.6 Conclusions 268
References 268

Epilogue 271
 S. A. Velastin

Index 277