Chaotic Dynamics
An Introduction Based on Classical Mechanics

Tamás Tél and
Márton Gruiz
Eötvös University, Budapest

Translated by Katalin Kulacsy

Three-dimensional graphics
by Szilárd Hadobás
Contents

List of colour plates
Preface
Acknowledgements
How to read the book

Part I The phenomenon: complex motion, unusual geometry

1 Chaotic motion
1.1 What is chaos? 3
1.2 Examples of chaotic motion 4
1.3 Phase space 19
1.4 Definition of chaos; a summary 21
1.5 How should chaotic motion be examined?
 Box 1.1 Brief history of chaos 23

2 Fractal objects
2.1 What is a fractal? 24
2.2 Types of fractals 32
2.3 Fractal distributions 40
2.4 Fractals and chaos 45
 Box 2.1 Brief history of fractals 47

Part II Introductory concepts

3 Regular motion
3.1 Instability and stability 51
 Box 3.1 Instability, randomness and chaos 59
3.2 Stability analysis 65
3.3 Emergence of instability 67
 Box 3.2 How to determine manifolds numerically 73
3.4 Stationary periodic motion: the limit cycle (skiing on a slope) 76
3.5 General phase space 79
4 Driven motion

4.1 General properties 90
4.2 Harmonically driven motion around a stable state 95
4.3 Harmonically driven motion around an unstable state 98
4.4 Kicked harmonic oscillator 100
4.5 Fixed points and their stability in two-dimensional maps 103
4.6 The area contraction rate 105
4.7 General properties of maps related to differential equations
 Box 4.1 The world of non-invertible maps 108
4.8 In what systems can we expect chaotic behaviour? 109

Part III Investigation of chaotic motion 111

5 Chaos in dissipative systems 113

5.1 Baker map 114
5.2 Kicked oscillators 131
 Box 5.1 Hénon-type maps 147
5.3 Parameter dependence: the period-doubling cascade 149
5.4 General properties of chaotic motion 154
 Box 5.2 The trap of the 'butterfly effect' 159
 Box 5.3 Determinism and chaos 168
5.5 Summary of the properties of dissipative chaos 171
 Box 5.4 What use is numerical simulation? 172
 Box 5.5 Ball bouncing on a vibrating plate 174
5.6 Continuous-time systems 175
5.7 The water-wheel 181
 Box 5.6 The Lorenz model 187

6 Transient chaos in dissipative systems 191

6.1 The open baker map 193
6.2 Kicked oscillators 199
 Box 6.1 How do we determine the saddle and its manifolds? 201
6.3 General properties of chaotic transients 202
6.4 Summary of the properties of transient chaos 210
 Box 6.2 Significance of the unstable manifold 211
 Box 6.3 The horseshoe map 213
6.5 Parameter dependence: crisis 214
6.6 Transient chaos in water-wheel dynamics 217
6.7 Other types of crises, periodic windows 219
6.8 Fractal basin boundaries 221
 Box 6.4 Other aspects of chaotic transients 225
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Chaos in conservative systems</td>
<td>227</td>
</tr>
<tr>
<td>7.1</td>
<td>Phase space of conservative systems</td>
<td>227</td>
</tr>
<tr>
<td>7.2</td>
<td>The area preserving baker map</td>
<td>230</td>
</tr>
<tr>
<td>7.3</td>
<td>Kicked rotator – the standard map</td>
<td>234</td>
</tr>
<tr>
<td>7.4</td>
<td>Autonomous conservative systems</td>
<td>242</td>
</tr>
<tr>
<td>7.5</td>
<td>General properties of conservative chaos</td>
<td>250</td>
</tr>
<tr>
<td>7.6</td>
<td>Summary of the properties of conservative chaos</td>
<td>259</td>
</tr>
<tr>
<td>7.7</td>
<td>Homogeneously chaotic systems</td>
<td>260</td>
</tr>
<tr>
<td>8</td>
<td>Chaotic scattering</td>
<td>264</td>
</tr>
<tr>
<td>8.1</td>
<td>The scattering function</td>
<td>265</td>
</tr>
<tr>
<td>8.2</td>
<td>Scattering on discs</td>
<td>266</td>
</tr>
<tr>
<td>8.3</td>
<td>Scattering in other systems</td>
<td>274</td>
</tr>
<tr>
<td>8.4</td>
<td>Summary of the properties of chaotic scattering</td>
<td>277</td>
</tr>
<tr>
<td>9</td>
<td>Applications of chaos</td>
<td>279</td>
</tr>
<tr>
<td>9.1</td>
<td>Spacecraft and planets: the three-body problem</td>
<td>279</td>
</tr>
<tr>
<td>9.2</td>
<td>Rotating rigid bodies: the spinning top</td>
<td>285</td>
</tr>
<tr>
<td>9.3</td>
<td>Climate variability and climatic change: Lorenz’s model of global atmospheric circulation</td>
<td>293</td>
</tr>
<tr>
<td>9.4</td>
<td>Vortices, advection and pollution: chaos in fluid flows</td>
<td>304</td>
</tr>
<tr>
<td>10</td>
<td>Epilogue: outlook</td>
<td>318</td>
</tr>
<tr>
<td>10.1</td>
<td>Turbulence and spatio-temporal chaos</td>
<td>320</td>
</tr>
<tr>
<td>A.1</td>
<td>Deriving stroboscopic maps</td>
<td>322</td>
</tr>
<tr>
<td>A.2</td>
<td>Writing equations in dimensionless forms</td>
<td>325</td>
</tr>
</tbody>
</table>
A.3 Numerical solution of ordinary differential equations 329
A.4 Sample programs 332
A.5 Numerical determination of chaos parameters 337

Solutions to the problems 342
Bibliography 370
Index 387