Sums of Squares of Integers

Carlos J. Moreno
Samuel S. Wagstaff, Jr.
Contents

1 Introduction
1.1 Prerequisites .. 1
1.2 Outline of the Rest of the Book 2
1.2.1 Chapter 2 .. 2
1.2.2 Chapter 3 .. 3
1.2.3 Chapter 4 .. 4
1.2.4 Chapter 5 .. 5
1.2.5 Chapter 6 .. 7
1.2.6 Chapter 7 .. 8
1.2.7 Chapter 8 .. 9

2 Elementary Methods .. 11
2.1 Introduction .. 11
2.2 Some Lemmas ... 13
2.3 Two Fundamental Identities 14
2.4 Euler's Recurrence for $a(n)$ 18
2.5 More Identities 23
2.6 Sums of Two Squares 26
2.7 Sums of Four Squares 29
2.8 Still More Identities 34
2.9 Sums of Three Squares 38
2.10 An Alternate Method 43
2.11 Sums of Polygonal Numbers 54
2.12 Exercises ... 57

3 Bernoulli Numbers .. 61
3.1 Overview .. 61
3.2 Definition of the Bernoulli Numbers 62
3.3 The Euler-MacLaurin Sum Formula 65
3.4 The Riemann Zeta Function 73
3.4.1 Functional Equation for the Zeta Function 77
3.4.2 Functional Equation for the Dirichlet L-functions 83
3.4.3 Generalized Bernoulli Numbers 89
3.5 Signs of Bernoulli Numbers Alternate 90
3.6 The von Staudt-Clausen Theorem 92
<table>
<thead>
<tr>
<th>Contents</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7 Congruences of Voronoi and Kummer</td>
<td>95</td>
</tr>
<tr>
<td>3.8 Irregular Primes</td>
<td>103</td>
</tr>
<tr>
<td>3.9 Fractional Parts of Bernoulli Numbers</td>
<td>107</td>
</tr>
<tr>
<td>3.10 Exercises</td>
<td>113</td>
</tr>
<tr>
<td>4 Examples of Modular Forms</td>
<td>117</td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td>117</td>
</tr>
<tr>
<td>4.2 An Example of Jacobi and Smith</td>
<td>118</td>
</tr>
<tr>
<td>4.3 An Example of Ramanujan and Mordell</td>
<td>129</td>
</tr>
<tr>
<td>4.4 An Example of Wilton: $\tau(n)$ Modulo 23</td>
<td>139</td>
</tr>
<tr>
<td>4.4.1 Factorization in Nonnormal Extensions of \mathbb{Q}</td>
<td>145</td>
</tr>
<tr>
<td>4.4.2 Table for the Computation of Frobeniuses</td>
<td>147</td>
</tr>
<tr>
<td>4.5 An Example of Hamburger</td>
<td>148</td>
</tr>
<tr>
<td>4.6 Exercises</td>
<td>153</td>
</tr>
<tr>
<td>5 Hecke’s Theory of Modular Forms</td>
<td>157</td>
</tr>
<tr>
<td>5.1 Introduction</td>
<td>157</td>
</tr>
<tr>
<td>5.2 Modular Group Γ and Its Subgroup $\Gamma_0(N)$</td>
<td>158</td>
</tr>
<tr>
<td>5.3 Fundamental Domains for Γ and $\Gamma_0(N)$</td>
<td>160</td>
</tr>
<tr>
<td>5.4 Integral Modular Forms</td>
<td>161</td>
</tr>
<tr>
<td>5.5 Modular Forms of Type $M_k(\Gamma_0(N), \chi)$ and Euler-Poincaré Series</td>
<td>164</td>
</tr>
<tr>
<td>5.6 Hecke Operators</td>
<td>166</td>
</tr>
<tr>
<td>5.7 Dirichlet Series and Their Functional Equation</td>
<td>168</td>
</tr>
<tr>
<td>5.8 The Petersson Inner Product</td>
<td>168</td>
</tr>
<tr>
<td>5.9 The Method of Poincaré Series</td>
<td>170</td>
</tr>
<tr>
<td>5.10 Fourier Coefficients of Poincaré Series</td>
<td>175</td>
</tr>
<tr>
<td>5.11 A Classical Bound for the Ramanujan τ-Function</td>
<td>179</td>
</tr>
<tr>
<td>5.12 The Eichler-Selberg Trace Formula</td>
<td>179</td>
</tr>
<tr>
<td>5.13 ℓ-Adic Representations and the Ramanujan Conjecture</td>
<td>180</td>
</tr>
<tr>
<td>5.14 Exercises</td>
<td>181</td>
</tr>
<tr>
<td>6 Representation of Numbers as Sums of Squares</td>
<td>185</td>
</tr>
<tr>
<td>6.1 Introduction</td>
<td>185</td>
</tr>
<tr>
<td>6.2 The Circle Method and Poincaré Series</td>
<td>186</td>
</tr>
<tr>
<td>6.3 Explicit Formulas for the Singular Series</td>
<td>194</td>
</tr>
<tr>
<td>6.4 The Singular Series</td>
<td>198</td>
</tr>
<tr>
<td>6.4.1 Quadratic Gaussian Sums</td>
<td>198</td>
</tr>
<tr>
<td>6.4.2 Ramanujan Sums</td>
<td>205</td>
</tr>
<tr>
<td>6.4.3 Fourier Transforms of Gaussian Sums</td>
<td>206</td>
</tr>
<tr>
<td>6.4.4 Local Singular Series $L_p(w, \rho_s)$, s Odd and p Odd</td>
<td>211</td>
</tr>
<tr>
<td>6.4.5 Local Singular Series $L_2(w, \rho_s)$, s Odd</td>
<td>215</td>
</tr>
<tr>
<td>6.4.6 Local Singular Series $L_p(w, \rho_s)$, s Even</td>
<td>219</td>
</tr>
<tr>
<td>6.4.7 Examples</td>
<td>222</td>
</tr>
<tr>
<td>6.5 Exact Formulas for the Number of Representations</td>
<td>233</td>
</tr>
<tr>
<td>6.6 Examples: Quadratic Forms and Sums of Squares</td>
<td>245</td>
</tr>
</tbody>
</table>
Contents

6.7 Liouville's Methods and Elliptic Modular Forms 248
 6.7.1 The Basic Elliptic Modular Forms .. 249
 6.7.2 Jacobi's Identity: The Origin of Liouville's Methods 253
6.8 Exercises ... 258

7 Arithmetic Progressions .. 261
 7.1 Introduction .. 261
 7.2 Van der Waerden's Theorem .. 263
 7.3 Roth's Theorem \(\tau_3 = 0 \) .. 265
 7.4 Szemerédi's Proof of Roth's Theorem 271
 7.5 Bipartite Graphs .. 273
 7.6 Configurations .. 279
 7.7 More Definitions .. 291
 7.8 The Choice of \(t_m \) .. 295
 7.9 Well-Saturated \(K \)-tuples ... 296
 7.10 Szemerédi's Theorem .. 307
 7.11 Arithmetic Progressions of Squares .. 312
 7.12 Exercises ... 315

8 Applications .. 317
 8.1 Factoring Integers ... 317
 8.2 Computing Sums of Two Squares .. 320
 8.3 Computing Sums of Three Squares .. 325
 8.4 Computing Sums of Four Squares .. 327
 8.5 Computing \(r_s(n) \) ... 329
 8.6 Resonant Cavities ... 330
 8.7 Diamond Cutting ... 334
 8.8 Cryptanalysis of a Signature Scheme 337
 8.9 Exercises ... 340

References ... 343

Index ... 350