Preface

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xv</td>
</tr>
</tbody>
</table>

1 Introduction

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Nano-optics in a nutshell</td>
<td>3</td>
</tr>
<tr>
<td>1.2 Historical survey</td>
<td>5</td>
</tr>
<tr>
<td>1.3 Scope of the book</td>
<td>7</td>
</tr>
<tr>
<td>References</td>
<td>11</td>
</tr>
</tbody>
</table>

2 Theoretical foundations

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Macroscopic electrodynamics</td>
<td>14</td>
</tr>
<tr>
<td>2.2 Wave equations</td>
<td>15</td>
</tr>
<tr>
<td>2.3 Constitutive relations</td>
<td>15</td>
</tr>
<tr>
<td>2.4 Spectral representation of time-dependent fields</td>
<td>17</td>
</tr>
<tr>
<td>2.5 Time-harmonic fields</td>
<td>17</td>
</tr>
<tr>
<td>2.6 Complex dielectric constant</td>
<td>18</td>
</tr>
<tr>
<td>2.7 Piecewise homogeneous media</td>
<td>19</td>
</tr>
<tr>
<td>2.8 Boundary conditions</td>
<td>19</td>
</tr>
<tr>
<td>2.8.1 Fresnel reflection and transmission coefficients</td>
<td>21</td>
</tr>
<tr>
<td>2.9 Conservation of energy</td>
<td>23</td>
</tr>
<tr>
<td>2.10 Dyadic Green’s functions</td>
<td>25</td>
</tr>
<tr>
<td>2.10.1 Mathematical basis of Green’s functions</td>
<td>25</td>
</tr>
<tr>
<td>2.10.2 Derivation of the Green’s function for the electric field</td>
<td>26</td>
</tr>
<tr>
<td>2.10.3 Time-dependent Green’s functions</td>
<td>30</td>
</tr>
<tr>
<td>2.11 Evanescent fields</td>
<td>31</td>
</tr>
<tr>
<td>2.11.1 Energy transport by evanescent waves</td>
<td>35</td>
</tr>
<tr>
<td>2.11.2 Frustrated total internal reflection</td>
<td>36</td>
</tr>
<tr>
<td>2.12 Angular spectrum representation of optical fields</td>
<td>38</td>
</tr>
<tr>
<td>2.12.1 Angular spectrum representation of the dipole field</td>
<td>42</td>
</tr>
</tbody>
</table>
3 Propagation and focusing of optical fields

3.1 Field propagators

3.2 Paraxial approximation of optical fields

3.2.1 Gaussian laser beams

3.2.2 Higher-order laser modes

3.2.3 Longitudinal fields in the focal region

3.3 Polarized electric and polarized magnetic fields

3.4 Far-fields in the angular spectrum representation

3.5 Focusing of fields

3.6 Focal fields

3.7 Focusing of higher-order laser modes

3.8 Limit of weak focusing

3.9 Focusing near planar interfaces

3.10 Reflected image of a strongly focused spot

Problems

References

4 Spatial resolution and position accuracy

4.1 The point-spread function

4.2 The resolution limit(s)

4.2.1 Increasing resolution through selective excitation

4.2.2 Axial resolution

4.2.3 Resolution enhancement through saturation

4.3 Principles of confocal microscopy

4.4 Axial resolution in multiphoton microscopy

4.5 Position accuracy

4.5.1 Theoretical background

4.5.2 Estimating the uncertainties of fit parameters

4.6 Principles of near-field optical microscopy

4.6.1 Information transfer from near-field to far-field

Problems

References

5 Nanoscale optical microscopy

5.1 Far-field illumination and detection

5.1.1 Confocal microscopy

5.2 Near-field illumination and far-field detection

5.2.1 Aperture scanning near-field optical microscopy

5.2.2 Field-enhanced scanning near-field optical microscopy
Contents

5.3 Far-field illumination and near-field detection
5.3.1 Scanning tunneling optical microscopy
5.3.2 Collection mode near-field optical microscopy
5.4 Near-field illumination and near-field detection
5.5 Other configurations: energy-transfer microscopy
5.6 Conclusion
Problems
References

6 Near-field optical probes
6.1 Dielectric probes
6.1.1 Tapered optical fibers
6.1.2 Tetrahedral tips
6.2 Light propagation in a conical dielectric probe
6.3 Aperture probes
6.3.1 Power transmission through aperture probes
6.3.2 Field distribution near small apertures
6.3.3 Near-field distribution of aperture probes
6.3.4 Enhancement of transmission and directionality
6.4 Fabrication of aperture probes
6.4.1 Aperture formation by focused ion beam milling
6.4.2 Electrochemical opening and closing of apertures
6.4.3 Aperture punching
6.4.4 Microfabricated probes
6.5 Optical antennas: tips, scatterers, and bowties
6.5.1 Solid metal tips
6.5.2 Particle-plasmon probes
6.5.3 Bowtie antenna probes
6.6 Conclusion
Problems
References

7 Probe-sample distance control
7.1 Shear-force methods
7.1.1 Optical fibers as resonating beams
7.1.2 Tuning-fork sensors
7.1.3 The effective harmonic oscillator model
7.1.4 Response time
7.1.5 Equivalent electric circuit
7.2 Normal force methods
7.2.1 Tuning fork in tapping mode
7.2.2 Bent fiber probes

Contents

7.3 Topographic artifacts 240
 7.3.1 Phenomenological theory of artifacts 243
 7.3.2 Example of near-field artifacts 245
 7.3.3 Discussion 246
Problems 247
References 248

8 Light emission and optical interactions in nanoscale environments 250
 8.1 The multipole expansion 251
 8.2 The classical particle–field Hamiltonian 255
 8.2.1 Multipole expansion of the interaction Hamiltonian 258
 8.3 The radiating electric dipole 260
 8.3.1 Electric dipole fields in a homogeneous space 261
 8.3.2 Dipole radiation 265
 8.3.3 Rate of energy dissipation in inhomogeneous environments 266
 8.3.4 Radiation reaction 268
 8.4 Spontaneous decay 269
 8.4.1 QED of spontaneous decay 270
 8.4.2 Spontaneous decay and Green’s dyadics 273
 8.4.3 Local density of states 276
 8.5 Classical lifetimes and decay rates 277
 8.5.1 Homogeneous environment 277
 8.5.2 Inhomogeneous environment 281
 8.5.3 Frequency shifts 282
 8.5.4 Quantum yield 283
 8.6 Dipole–dipole interactions and energy transfer 284
 8.6.1 Multipole expansion of the Coulombic interaction 284
 8.6.2 Energy transfer between two particles 285
 8.7 Delocalized excitations (strong coupling) 294
 8.7.1 Entanglement 299
Problems 300
References 302

9 Quantum emitters 304
 9.1 Fluorescent molecules 304
 9.1.1 Excitation 305
 9.1.2 Relaxation 306
 9.2 Semiconductor quantum dots 309
 9.2.1 Surface passivation 310
 9.2.2 Excitation 312
 9.2.3 Coherent control of excitons 313
Contents

9.3 The absorption cross-section 315
9.4 Single-photon emission by three-level systems 318
 9.4.1 Steady-state analysis 319
 9.4.2 Time-dependent analysis 320
9.5 Single molecules as probes for localized fields 325
 9.5.1 Field distribution in a laser focus 327
 9.5.2 Probing strongly localized fields 329
9.6 Conclusion 332
Problems 333
References 333

10 Dipole emission near planar interfaces 335
 10.1 Allowed and forbidden light 336
 10.2 Angular spectrum representation of the dyadic Green’s function 338
 10.3 Decomposition of the dyadic Green’s function 339
 10.4 Dyadic Green’s functions for the reflected and transmitted fields 340
 10.5 Spontaneous decay rates near planar interfaces 343
 10.6 Far-fields 346
 10.7 Radiation patterns 350
 10.8 Where is the radiation going? 353
 10.9 Magnetic dipoles 356
 10.10 Image dipole approximation 357
 10.10.1 Vertical dipole 358
 10.10.2 Horizontal dipole 359
 10.10.3 Including retardation 359
Problems 360
References 361

11 Photonic crystals and resonators 363
 11.1 Photonic crystals 363
 11.1.1 The photonic bandgap 364
 11.1.2 Defects in photonic crystals 368
 11.2 Optical microcavities 370
Problems 377
References 377

12 Surface plasmons 378
 12.1 Optical properties of noble metals 379
 12.1.1 Drude–Sommerfeld theory 380
 12.1.2 Interband transitions 381
 12.2 Surface plasmon polaritons at plane interfaces 382
 12.2.1 Properties of surface plasmon polaritons 386